Lorentzian Worldlines and the Schwarzian Derivative
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 69-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2000_34_2_a8,
     author = {C. Duval and V. Yu. Ovsienko},
     title = {Lorentzian {Worldlines} and the {Schwarzian} {Derivative}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a8/}
}
TY  - JOUR
AU  - C. Duval
AU  - V. Yu. Ovsienko
TI  - Lorentzian Worldlines and the Schwarzian Derivative
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 69
EP  - 72
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a8/
LA  - ru
ID  - FAA_2000_34_2_a8
ER  - 
%0 Journal Article
%A C. Duval
%A V. Yu. Ovsienko
%T Lorentzian Worldlines and the Schwarzian Derivative
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 69-72
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a8/
%G ru
%F FAA_2000_34_2_a8
C. Duval; V. Yu. Ovsienko. Lorentzian Worldlines and the Schwarzian Derivative. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 69-72. http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a8/

[1] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, 1979 | MR

[2] Duval C., Guieu L., “The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet”, J. Geom. Phys., 33 (2000), 103–127 | DOI | MR | Zbl

[3] Ghys E., Cercles osculateurs et géométrie lorentzienne, Colloquium talk, Journée inaugurale du CMI, Marseille February 1995

[4] Hubbard J., “The monodromy of projective structures”, Riemann surfaces and related topics, Proc. of the Stony Brook Conference 1978, Ann. of Math. Stud., 97, eds. I. Kra and B. Maskit, Princeton Univ. Press, Princeton, NJ, 1981, 257–275 | MR

[5] Kostant B., Sternberg S., “The Schwartzian [Schwarzian] derivative and the conformal geometry of the Lorentz hyperboloid”, Quantum theories and geometry, Math. Phys. Stud., 10, eds. M. Cahen and M. Flato, Kluwer Acad. Publ., Dordrecht, 1988, 113–125 | MR

[6] Kulkarni R., “An analogue of the Riemann mapping theorem for Lorentz metrics”, Proc. Roy. Soc. London Ser. A, 401 (1985), 117–130 | DOI | MR | Zbl

[7] Ovsienko V. Yu., Tabachnikov S., “Sturm theory, Ghys theorem on zeroes of the Schwarzian derivative and flattening of Legendrian curves”, Selecta Math. (NS), 2:2 (1996), 297–307 | DOI | MR | Zbl

[8] Tabachnikov S., “On zeros of the Schwarzian derivative”, Topics in singularity theory, Amer. Math. Soc. Transl., Ser. 2, 180(34), Amer. Math. Soc., Providence, RI, 1997, 229–239 | MR | Zbl

[9] Wolf J. A., Spaces of constant curvature, McGraw-Hill, New York, 1967 | MR | Zbl