Poincar\'e--Steklov Integral Equations and the Riemann Monodromy Problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 9-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Poincaré–Steklov singular integral equation obtained by reducing a boundary value problem for the Laplace operator with a spectral parameter in the boundary condition to the boundary. It is shown that this equation can be restated equivalently in terms of the classical Riemann monodromy problem. Several equations of this type are solved in elliptic functions.
@article{FAA_2000_34_2_a1,
     author = {A. B. Bogatyrev},
     title = {Poincar\'e--Steklov {Integral} {Equations} and the {Riemann} {Monodromy} {Problem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {9--22},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a1/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - Poincar\'e--Steklov Integral Equations and the Riemann Monodromy Problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 9
EP  - 22
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a1/
LA  - ru
ID  - FAA_2000_34_2_a1
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T Poincar\'e--Steklov Integral Equations and the Riemann Monodromy Problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 9-22
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a1/
%G ru
%F FAA_2000_34_2_a1
A. B. Bogatyrev. Poincar\'e--Steklov Integral Equations and the Riemann Monodromy Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 9-22. http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a1/

[1] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh primenenie v analize, OVM AN, M., 1983 | MR

[2] Bogatyrev A. B., “On specrtra of pairs of Poincaré–Steklov operators”, Russ. J. Numer. Anal. Math. Model, 8:3 (1993), 177–194 | DOI | MR | Zbl

[3] Bogatyrev A. B., “Diskretnyi spektr zadachi dlya pary operatorov Puankare–Steklova”, Dokl. RAN, 358:3 (1998), 295–297 | MR

[4] Bogatyrev A. B., “Geometricheskii sposob resheniya serii integralnykh uravnenii Puankare–Steklova”, Matem. zametki, 63:3 (1998), 343–353 | DOI | MR | Zbl

[5] Bogatyrev A., “On the geometry of Poincaré–Steklov integral equations”, Modern Group Analysis-VII, MARS Publishers, Trondheim, 1999, 25–37 | MR

[6] Bolibrukh A. A., “Problema Rimana–Gilberta”, UMN, 45:2 (1990), 3–47 | MR | Zbl

[7] Gakhov F. D., Kraevye zadachi, Nauka, M., 1978. | MR | Zbl

[8] Gakhov F. D., Chibrikova L. I., “O nekotorykh tipakh singulyarnykh integralnykh uravnenii, razreshimykh v zamknutoi forme”, Matem. sb., 35:3 (1954), 395–436 | Zbl

[9] Klein F., Lektsii o razvitii matematiki v 19 stoletii, Nauka, M., 1989

[10] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[11] Vinberg E., Shvartsman O., “Discrete groups of motions of spaces of constant curvature”, Encyclop. Math. Sci., 29, Springer-Verlag, 1993 | DOI | MR | Zbl