Self-linking of Spatial Curves without Inflections and Its Applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 1-8

Voir la notice de l'article provenant de la source Math-Net.Ru

The self-linking number of generic smooth closed curves in Euclidean $3$-space is studied. A formula expressing the self-linking number via the signs of the double points of a generic projection of the curve on a plane and the signs of the torsion at the points that are projected into inflection points is obtained. Every local invariant of generic curves is proved to be equal, up to an additive constant, to a linear combination of two basic local invariants: the number of flattening points and the self-linking number.
@article{FAA_2000_34_2_a0,
     author = {F. Aicardi},
     title = {Self-linking of {Spatial} {Curves} without {Inflections} and {Its} {Applications}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/}
}
TY  - JOUR
AU  - F. Aicardi
TI  - Self-linking of Spatial Curves without Inflections and Its Applications
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 1
EP  - 8
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/
LA  - ru
ID  - FAA_2000_34_2_a0
ER  - 
%0 Journal Article
%A F. Aicardi
%T Self-linking of Spatial Curves without Inflections and Its Applications
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 1-8
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/
%G ru
%F FAA_2000_34_2_a0
F. Aicardi. Self-linking of Spatial Curves without Inflections and Its Applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/