Self-linking of Spatial Curves without Inflections and Its Applications
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 1-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The self-linking number of generic smooth closed curves in Euclidean $3$-space is studied. A formula expressing the self-linking number via the signs of the double points of a generic projection of the curve on a plane and the signs of the torsion at the points that are projected into inflection points is obtained. Every local invariant of generic curves is proved to be equal, up to an additive constant, to a linear combination of two basic local invariants: the number of flattening points and the self-linking number.
@article{FAA_2000_34_2_a0,
     author = {F. Aicardi},
     title = {Self-linking of {Spatial} {Curves} without {Inflections} and {Its} {Applications}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/}
}
TY  - JOUR
AU  - F. Aicardi
TI  - Self-linking of Spatial Curves without Inflections and Its Applications
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 1
EP  - 8
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/
LA  - ru
ID  - FAA_2000_34_2_a0
ER  - 
%0 Journal Article
%A F. Aicardi
%T Self-linking of Spatial Curves without Inflections and Its Applications
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 1-8
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/
%G ru
%F FAA_2000_34_2_a0
F. Aicardi. Self-linking of Spatial Curves without Inflections and Its Applications. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 1-8. http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a0/

[1] Calugareanu G., “L'integrale de Gauss et I'analyse des noeuds tridimensionnels”, Rev. Math. Pures Appl., 4:1 (1959), 5–20 | MR

[2] Barner M., “Über die Mindestanzahl stationärer Schmiegebenen bei geschlossen streng-konvexen Raumkurven”, Abh. Math. Sem. Univ. Hamburg, 20 (1956), 196–215 | DOI | MR | Zbl

[3] Arnold V. I., “On the number of flattening points on space curves”, Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, 171, Amer. Math. Soc., Providence, RI, 1996, 11–22 ; Institut Mittag-Leffler, Report no. 1 (1994–1995) pp. 1–13 | MR | Zbl

[4] Sedykh V. D., “Teorema o chetyrekh vershinakh vypukloi prostranstvennoi krivoi”, Funkts. analiz i ego pril., 26:1 (1992), 35–41 | MR | Zbl

[5] Romero Fuster M. C., Sedykh V. D., “A lower estimate for the number of zero-torsion points of a space curve”, Beiträge Algebra Geom., 38:1 (1997), 183–192 | MR | Zbl

[6] Rodrigues Costa Sueli I., “On closed twisted curves”, Proc. Amer. Math. Soc., 109:1 (1990), 205–214 | DOI | MR | Zbl

[7] Aicardi F., “Topological invariants of knots and framed knots in the solid torus”, C. R. Acad. Sci. Paris Sér. I, 321 (1995), 199–204 | MR | Zbl

[8] White J. H., “Self-linking and Gauss integral in higher dimensions”, Amer. J. Math., 91 (1969), 693–728 | DOI | MR | Zbl

[9] Fuller F. B., “Decomposition of the linking number of a closed ribbon: a problem from molecular biology”, Proc. Nat. Acad. Sci. USA, 75:8 (1978), 3557–3561 | DOI | MR | Zbl

[10] Kauffman L. H., Knots and Physics, Series on Knots and Everything, Word Scientific, Singapore, 1991 | DOI | MR

[11] Arnold V. I., Khesin B. A., Topological Methods in Hydrodinamics, Applied Mathematical Sciences, 125, Springer-Verlag, 1998 | DOI | MR | Zbl

[12] Arnold V. I., “Topologicheskie voprosy teorii asimptoticheskikh krivykh”, Trudy MIAN, 225, 1999, 11–20 | Zbl