Anisotropic Young Diagrams and Jack Symmetric Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 51-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Young lattice with the edge multiplicities $\varkappa_\alpha(\lambda,\Lambda)$ arising in the simplest Pieri formula for Jack symmetric polynomials $P_\lambda(x;\alpha)$ with parameter $\alpha$. A new proof of Stanley's $\alpha$-version of the hook formula is given. We also prove the formula
$$
\sum_\Lambda (c_\alpha(b)+u)(c_\alpha(b)+v)\varkappa_\alpha(\lambda,\Lambda)\varphi(\Lambda)=
(n\alpha+uv)\varphi(\lambda),
$$
where $\varphi(\lambda)=\prod_{b\in\lambda}(a(b)\alpha+l(b)+1)^{-1}$ and $c_\alpha(b)$ is the $\alpha$-contents of the new box $b=\Lambda\setminus\lambda$.
@article{FAA_2000_34_1_a4,
author = {S. V. Kerov},
title = {Anisotropic {Young} {Diagrams} and {Jack} {Symmetric} {Functions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {51--64},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a4/}
}
S. V. Kerov. Anisotropic Young Diagrams and Jack Symmetric Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a4/