Anisotropic Young Diagrams and Jack Symmetric Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 51-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Young lattice with the edge multiplicities $\varkappa_\alpha(\lambda,\Lambda)$ arising in the simplest Pieri formula for Jack symmetric polynomials $P_\lambda(x;\alpha)$ with parameter $\alpha$. A new proof of Stanley's $\alpha$-version of the hook formula is given. We also prove the formula $$ \sum_\Lambda (c_\alpha(b)+u)(c_\alpha(b)+v)\varkappa_\alpha(\lambda,\Lambda)\varphi(\Lambda)= (n\alpha+uv)\varphi(\lambda), $$ where $\varphi(\lambda)=\prod_{b\in\lambda}(a(b)\alpha+l(b)+1)^{-1}$ and $c_\alpha(b)$ is the $\alpha$-contents of the new box $b=\Lambda\setminus\lambda$.
@article{FAA_2000_34_1_a4,
     author = {S. V. Kerov},
     title = {Anisotropic {Young} {Diagrams} and {Jack} {Symmetric} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a4/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - Anisotropic Young Diagrams and Jack Symmetric Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 51
EP  - 64
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a4/
LA  - ru
ID  - FAA_2000_34_1_a4
ER  - 
%0 Journal Article
%A S. V. Kerov
%T Anisotropic Young Diagrams and Jack Symmetric Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 51-64
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a4/
%G ru
%F FAA_2000_34_1_a4
S. V. Kerov. Anisotropic Young Diagrams and Jack Symmetric Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a4/