Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_1_a2, author = {I. A. Dynnikov}, title = {Three-Page {Approach} to {Knot} {Theory.} {Universal} {Semigroup}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {29--40}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a2/} }
I. A. Dynnikov. Three-Page Approach to Knot Theory. Universal Semigroup. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a2/
[1] Brunn H., “Uber verknotete Kurven”, Mathematiker-Kongresses Zurich (1897, Leipzig), 1898, 256–259
[2] Cromwell P. R. and Nutt I. J., “Embedding knots and links in an open book. II: Bounds on arc index”, Math. Proc. Camb. Philos. Soc., 119:2 (1996), 309–319 | DOI | MR | Zbl
[3] Morton H. R., Beltrami E., “Arc index and the Kauffman poynomial”, Math. Proc. Camb. Philos. Soc., 123 (1998), 41–48 | DOI | MR | Zbl
[4] Dynnikov I. A., “Trekhstranichnoe predstavlenie zatseplenii”, UMN, 53:5 (1998), 237–238 | DOI | MR | Zbl
[5] Dynnikov I. A., A new way to represent links. One-dimensional formalism and untangling technology, Preprint, Moscow, 1998 ; http://mech.math.msu.su/~dynnikov | MR
[6] Turaev V. G., “Operatornye invarianty svyazok i $R$-matritsy”, Izv. AN SSSR, ser. matem., 53:5 (1989), 1073–1107 | MR
[7] Kauffman L. H., “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl
[8] Kauffman L. H., “An invariant of regular isotopy”, Trans. Amer. Math. Soc., 318:2 (1990), 417–471 | DOI | MR | Zbl
[9] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Kodirovanie i lokalnye dvizheniya”, Funkts. analiz i ego pril., 33:4 (1999), 25–37 | DOI | MR | Zbl