Three-Page Approach to Knot Theory. Universal Semigroup
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit construction of a finitely presented semigroup whose central elements are in a one-to-one correspondence with the isotopy classes of unoriented links in the three-space is given, together with a finite presentation for the group of invertible elements of the semigroup. The group is presented by two generators and three relations. The commutator subgroup of the group is isomorphic to the braid group of infinite index. A similar construction is given for band-links. The Kauffman theorems on the existence of polynomial band-link invariants satisfying some skein-relations are stated algebraically.
@article{FAA_2000_34_1_a2,
     author = {I. A. Dynnikov},
     title = {Three-Page {Approach} to {Knot} {Theory.} {Universal} {Semigroup}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {29--40},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a2/}
}
TY  - JOUR
AU  - I. A. Dynnikov
TI  - Three-Page Approach to Knot Theory. Universal Semigroup
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 29
EP  - 40
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a2/
LA  - ru
ID  - FAA_2000_34_1_a2
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%T Three-Page Approach to Knot Theory. Universal Semigroup
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 29-40
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a2/
%G ru
%F FAA_2000_34_1_a2
I. A. Dynnikov. Three-Page Approach to Knot Theory. Universal Semigroup. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/FAA_2000_34_1_a2/

[1] Brunn H., “Uber verknotete Kurven”, Mathematiker-Kongresses Zurich (1897, Leipzig), 1898, 256–259

[2] Cromwell P. R. and Nutt I. J., “Embedding knots and links in an open book. II: Bounds on arc index”, Math. Proc. Camb. Philos. Soc., 119:2 (1996), 309–319 | DOI | MR | Zbl

[3] Morton H. R., Beltrami E., “Arc index and the Kauffman poynomial”, Math. Proc. Camb. Philos. Soc., 123 (1998), 41–48 | DOI | MR | Zbl

[4] Dynnikov I. A., “Trekhstranichnoe predstavlenie zatseplenii”, UMN, 53:5 (1998), 237–238 | DOI | MR | Zbl

[5] Dynnikov I. A., A new way to represent links. One-dimensional formalism and untangling technology, Preprint, Moscow, 1998 ; http://mech.math.msu.su/~dynnikov | MR

[6] Turaev V. G., “Operatornye invarianty svyazok i $R$-matritsy”, Izv. AN SSSR, ser. matem., 53:5 (1989), 1073–1107 | MR

[7] Kauffman L. H., “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl

[8] Kauffman L. H., “An invariant of regular isotopy”, Trans. Amer. Math. Soc., 318:2 (1990), 417–471 | DOI | MR | Zbl

[9] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Kodirovanie i lokalnye dvizheniya”, Funkts. analiz i ego pril., 33:4 (1999), 25–37 | DOI | MR | Zbl