Intertwining Operators and Soliton Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 1-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The fermionic approach to the Kadomtsev–Petviashvili hierarchy, suggested by the Kyoto school (Sato, Date, Jimbo, Kashiwara, and Miwa) in 1981–4, is generalized on the basis of the idea that, in a sense, the components of intertwining operators are a generalization of free fermions for $gl_\infty$. Integrable hierarchies related to symmetries of Kac–Moody algebras are described in terms of intertwining operators. The bosonization of these operators for various choices of the Heisenberg subalgebra is explicitly written out. These various realizations result in distinct hierarchies of soliton equations. For example, for $sl_N$-symmetries this gives the hierarchies obtained by the $(n_1,\dots,n_s)$-reduction from the $s$-component KP hierarchy introduced by Kac and van de Leur.
@article{FAA_1999_33_4_a0,
     author = {M. I. Golenishcheva-Kutuzova and D. R. Lebedev},
     title = {Intertwining {Operators} and {Soliton} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--24},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/}
}
TY  - JOUR
AU  - M. I. Golenishcheva-Kutuzova
AU  - D. R. Lebedev
TI  - Intertwining Operators and Soliton Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 1
EP  - 24
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/
LA  - ru
ID  - FAA_1999_33_4_a0
ER  - 
%0 Journal Article
%A M. I. Golenishcheva-Kutuzova
%A D. R. Lebedev
%T Intertwining Operators and Soliton Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 1-24
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/
%G ru
%F FAA_1999_33_4_a0
M. I. Golenishcheva-Kutuzova; D. R. Lebedev. Intertwining Operators and Soliton Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 1-24. http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/