Intertwining Operators and Soliton Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 1-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The fermionic approach to the Kadomtsev–Petviashvili hierarchy, suggested by the Kyoto school (Sato, Date, Jimbo, Kashiwara, and Miwa) in 1981–4, is generalized on the basis of the idea that, in a sense, the components of intertwining operators are a generalization of free fermions for $gl_\infty$. Integrable hierarchies related to symmetries of Kac–Moody algebras are described in terms of intertwining operators. The bosonization of these operators for various choices of the Heisenberg subalgebra is explicitly written out. These various realizations result in distinct hierarchies of soliton equations. For example, for $sl_N$-symmetries this gives the hierarchies obtained by the $(n_1,\dots,n_s)$-reduction from the $s$-component KP hierarchy introduced by Kac and van de Leur.
@article{FAA_1999_33_4_a0,
     author = {M. I. Golenishcheva-Kutuzova and D. R. Lebedev},
     title = {Intertwining {Operators} and {Soliton} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--24},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/}
}
TY  - JOUR
AU  - M. I. Golenishcheva-Kutuzova
AU  - D. R. Lebedev
TI  - Intertwining Operators and Soliton Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 1
EP  - 24
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/
LA  - ru
ID  - FAA_1999_33_4_a0
ER  - 
%0 Journal Article
%A M. I. Golenishcheva-Kutuzova
%A D. R. Lebedev
%T Intertwining Operators and Soliton Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 1-24
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/
%G ru
%F FAA_1999_33_4_a0
M. I. Golenishcheva-Kutuzova; D. R. Lebedev. Intertwining Operators and Soliton Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 1-24. http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/

[1] Date E., Jimbo M., Kashiwara M., Miwa T., “Operator approach to the Kadomtsev–Petviashvili equation. Transformation group for soliton equations, III”, J. Phys. Soc. Japan, 50 (1981), 3806–3812 | DOI | MR | Zbl

[2] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy”, Publ. Res. Inst. Math. Sci., 18 (1982), 1077–1110 | DOI | MR | Zbl

[3] Fateev V. A., Zamolodchikov A. B., “Parafermionic $Z_N$-models”, Sov. J. Nucl. Phys., 43 (1986), 1031

[4] Frenkel Ed., Kac V., Radul A., Wang W., “$W_{1+\infty}$ and $W(\mathfrak{gl}_N)$ with central charge $N$”, Comm. Math. Phys., 170 (1995), 337–357 | DOI | MR | Zbl

[5] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[6] Gerasimov A., Khoroshkin S., Lebedev D., Mironov A., Morozov A., “Generalized Hirota equations and representation theory. The Case of $SL(2)$ and $SL_q(2)$”, Internat. J. Modern Phys., 10:18 (1995), 2589–2614 | DOI | MR | Zbl

[7] Golenishcheva-Kutuzova M., Soliton equations with Wakimoto modules symmetries. $\mathfrak{sl}_2$-case, In preparation

[8] Golenishcheva-Kutuzova M., Kac V., “$\Gamma$-Conformal algebras”, J. Math. Phys., 39:4 (1998), 2290–2305 ; arXiv: /q-alg/9709006 | DOI | MR | Zbl

[9] Kac V. G., Infinite dimensional Lie algebras, Third edition, Cambridge Univ. Press, 1990 ; Kats V., Beskonechnomernye algebry Li, Mir, M., 1993 | MR | MR | Zbl

[10] Kac V. G., Vertex algebras for beginners, University lecture series, 10, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[11] Kac V. G., Kazhdan D. A., Lepowsky J., Wilson R. L., “Realization of the basic representations of the Euclidean Lie algebras”, Adv. in Math., 4:1 (1981), 83–112 | DOI | MR

[12] Kac V. G., van de Leur J., “The $n$-component KP hierarchy and representation theory”, Important Developments in Soliton Theory, Springer Series in Nonlinear Dynamics, eds. A. Fokas and V. Zakharov, 1993, 302–343 | DOI | MR | Zbl

[13] Kac V. G., Peterson D. H., “$112$ constructions of the basic representation of the loop group of $E_8$”, Proc. of the Symposium “Anomalies, Geometry, Topology”, World Scientific, 1985, 276–289 | MR

[14] Kac V. G., Wakimoto M., “Exceptional hierarchies of soliton equations”, Proc. Symposia in Pure Math, 141 (1989), 191–237 | DOI | MR

[15] Kharchev S., Khoroshkin S., Lebedev D., “Spletayuschie operatory i bilineinye uravneniya Khiroty”, Teor. i matem. fiz., 104:1 (1995), 144–157 | MR | Zbl

[16] van de Leur J., “The $[n_1, n_2, \dots , n_s]$th reduced KP hierarchy and $W_{1+\infty}$ constrain”, Proc. of the Int. Conf. on Math. Phys., String Theory and Quant. Gravity at Alushta, 1994 | MR

[17] Sato M., “Soliton equations as dynamical systems on infinite dimentional Grassmann manifold”, RIMS Kokyuroku, 439 (1981), 30–46 | Zbl