Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1999_33_4_a0, author = {M. I. Golenishcheva-Kutuzova and D. R. Lebedev}, title = {Intertwining {Operators} and {Soliton} {Equations}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--24}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/} }
M. I. Golenishcheva-Kutuzova; D. R. Lebedev. Intertwining Operators and Soliton Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 4, pp. 1-24. http://geodesic.mathdoc.fr/item/FAA_1999_33_4_a0/
[1] Date E., Jimbo M., Kashiwara M., Miwa T., “Operator approach to the Kadomtsev–Petviashvili equation. Transformation group for soliton equations, III”, J. Phys. Soc. Japan, 50 (1981), 3806–3812 | DOI | MR | Zbl
[2] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy”, Publ. Res. Inst. Math. Sci., 18 (1982), 1077–1110 | DOI | MR | Zbl
[3] Fateev V. A., Zamolodchikov A. B., “Parafermionic $Z_N$-models”, Sov. J. Nucl. Phys., 43 (1986), 1031
[4] Frenkel Ed., Kac V., Radul A., Wang W., “$W_{1+\infty}$ and $W(\mathfrak{gl}_N)$ with central charge $N$”, Comm. Math. Phys., 170 (1995), 337–357 | DOI | MR | Zbl
[5] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl
[6] Gerasimov A., Khoroshkin S., Lebedev D., Mironov A., Morozov A., “Generalized Hirota equations and representation theory. The Case of $SL(2)$ and $SL_q(2)$”, Internat. J. Modern Phys., 10:18 (1995), 2589–2614 | DOI | MR | Zbl
[7] Golenishcheva-Kutuzova M., Soliton equations with Wakimoto modules symmetries. $\mathfrak{sl}_2$-case, In preparation
[8] Golenishcheva-Kutuzova M., Kac V., “$\Gamma$-Conformal algebras”, J. Math. Phys., 39:4 (1998), 2290–2305 ; arXiv: /q-alg/9709006 | DOI | MR | Zbl
[9] Kac V. G., Infinite dimensional Lie algebras, Third edition, Cambridge Univ. Press, 1990 ; Kats V., Beskonechnomernye algebry Li, Mir, M., 1993 | MR | MR | Zbl
[10] Kac V. G., Vertex algebras for beginners, University lecture series, 10, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[11] Kac V. G., Kazhdan D. A., Lepowsky J., Wilson R. L., “Realization of the basic representations of the Euclidean Lie algebras”, Adv. in Math., 4:1 (1981), 83–112 | DOI | MR
[12] Kac V. G., van de Leur J., “The $n$-component KP hierarchy and representation theory”, Important Developments in Soliton Theory, Springer Series in Nonlinear Dynamics, eds. A. Fokas and V. Zakharov, 1993, 302–343 | DOI | MR | Zbl
[13] Kac V. G., Peterson D. H., “$112$ constructions of the basic representation of the loop group of $E_8$”, Proc. of the Symposium “Anomalies, Geometry, Topology”, World Scientific, 1985, 276–289 | MR
[14] Kac V. G., Wakimoto M., “Exceptional hierarchies of soliton equations”, Proc. Symposia in Pure Math, 141 (1989), 191–237 | DOI | MR
[15] Kharchev S., Khoroshkin S., Lebedev D., “Spletayuschie operatory i bilineinye uravneniya Khiroty”, Teor. i matem. fiz., 104:1 (1995), 144–157 | MR | Zbl
[16] van de Leur J., “The $[n_1, n_2, \dots , n_s]$th reduced KP hierarchy and $W_{1+\infty}$ constrain”, Proc. of the Int. Conf. on Math. Phys., String Theory and Quant. Gravity at Alushta, 1994 | MR
[17] Sato M., “Soliton equations as dynamical systems on infinite dimentional Grassmann manifold”, RIMS Kokyuroku, 439 (1981), 30–46 | Zbl