@article{FAA_1999_33_3_a8,
author = {I. S. Kats},
title = {The {Hamburger} {Power} {Moment} {Problem} as {Part} of {Spectral} {Theory} of {Canonical} {Systems}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {81--85},
year = {1999},
volume = {33},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/}
}
I. S. Kats. The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 81-85. http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/
[1] Krein M. G., DAN SSSR, 87 (1952), 881–884 | MR | Zbl
[2] Kats I. S., Krein M. G., “Dopolnenie II”, v kn.: Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–737 | MR
[3] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR
[4] Krein M. G., “Ob odnom spetsialnom klasse tselykh i meromorfnykh funktsii”, v kn.: Akhiezer N., Krein M., O nekotorykh voprosakh teorii momentov, GONTI Ukrainy, Kharkov, 1938, 208–252
[5] Kats I. S., “Lineinye otnosheniya, porozhdaemye kanonicheskimi differentsialnymi uravneniyami”, Funkts. analiz i ego pril., 17:4 (1983), 86–87 | MR | Zbl
[6] Kats I. S., “Kriterii diskretnosti spektra singulyarnoi kanonicheskoi sistemy”, Funkts. analiz i ego pril., 29:3 (1995), 75–78 | MR | Zbl
[7] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR
[8] de Branges L., “Some Hilbert spaces of entire functions, II”, Trans. Amer. Math. Soc., 99 (1961), 118–152 | DOI | MR | Zbl