Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1999_33_3_a8, author = {I. S. Kats}, title = {The {Hamburger} {Power} {Moment} {Problem} as {Part} of {Spectral} {Theory} of {Canonical} {Systems}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {81--85}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/} }
TY - JOUR AU - I. S. Kats TI - The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1999 SP - 81 EP - 85 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/ LA - ru ID - FAA_1999_33_3_a8 ER -
I. S. Kats. The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 81-85. http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/
[1] Krein M. G., DAN SSSR, 87 (1952), 881–884 | MR | Zbl
[2] Kats I. S., Krein M. G., “Dopolnenie II”, v kn.: Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–737 | MR
[3] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR
[4] Krein M. G., “Ob odnom spetsialnom klasse tselykh i meromorfnykh funktsii”, v kn.: Akhiezer N., Krein M., O nekotorykh voprosakh teorii momentov, GONTI Ukrainy, Kharkov, 1938, 208–252
[5] Kats I. S., “Lineinye otnosheniya, porozhdaemye kanonicheskimi differentsialnymi uravneniyami”, Funkts. analiz i ego pril., 17:4 (1983), 86–87 | MR | Zbl
[6] Kats I. S., “Kriterii diskretnosti spektra singulyarnoi kanonicheskoi sistemy”, Funkts. analiz i ego pril., 29:3 (1995), 75–78 | MR | Zbl
[7] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR
[8] de Branges L., “Some Hilbert spaces of entire functions, II”, Trans. Amer. Math. Soc., 99 (1961), 118–152 | DOI | MR | Zbl