The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 81-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1999_33_3_a8,
     author = {I. S. Kats},
     title = {The {Hamburger} {Power} {Moment} {Problem} as {Part} of {Spectral} {Theory} of {Canonical} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--85},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/}
}
TY  - JOUR
AU  - I. S. Kats
TI  - The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 81
EP  - 85
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/
LA  - ru
ID  - FAA_1999_33_3_a8
ER  - 
%0 Journal Article
%A I. S. Kats
%T The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 81-85
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/
%G ru
%F FAA_1999_33_3_a8
I. S. Kats. The Hamburger Power Moment Problem as Part of Spectral Theory of Canonical Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 3, pp. 81-85. http://geodesic.mathdoc.fr/item/FAA_1999_33_3_a8/

[1] Krein M. G., DAN SSSR, 87 (1952), 881–884 | MR | Zbl

[2] Kats I. S., Krein M. G., “Dopolnenie II”, v kn.: Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968, 648–737 | MR

[3] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR

[4] Krein M. G., “Ob odnom spetsialnom klasse tselykh i meromorfnykh funktsii”, v kn.: Akhiezer N., Krein M., O nekotorykh voprosakh teorii momentov, GONTI Ukrainy, Kharkov, 1938, 208–252

[5] Kats I. S., “Lineinye otnosheniya, porozhdaemye kanonicheskimi differentsialnymi uravneniyami”, Funkts. analiz i ego pril., 17:4 (1983), 86–87 | MR | Zbl

[6] Kats I. S., “Kriterii diskretnosti spektra singulyarnoi kanonicheskoi sistemy”, Funkts. analiz i ego pril., 29:3 (1995), 75–78 | MR | Zbl

[7] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[8] de Branges L., “Some Hilbert spaces of entire functions, II”, Trans. Amer. Math. Soc., 99 (1961), 118–152 | DOI | MR | Zbl