Annihilating Ideals and Tilting Functors
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 2, pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1999_33_2_a2,
     author = {F. G. Malikov and I. B. Frenkel'},
     title = {Annihilating {Ideals} and {Tilting} {Functors}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a2/}
}
TY  - JOUR
AU  - F. G. Malikov
AU  - I. B. Frenkel'
TI  - Annihilating Ideals and Tilting Functors
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 31
EP  - 42
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a2/
LA  - ru
ID  - FAA_1999_33_2_a2
ER  - 
%0 Journal Article
%A F. G. Malikov
%A I. B. Frenkel'
%T Annihilating Ideals and Tilting Functors
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 31-42
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a2/
%G ru
%F FAA_1999_33_2_a2
F. G. Malikov; I. B. Frenkel'. Annihilating Ideals and Tilting Functors. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 2, pp. 31-42. http://geodesic.mathdoc.fr/item/FAA_1999_33_2_a2/

[1] Adamovic D., Milas A., “Vertex operator algebras associated to modular invariant representations for $A^{1}_{1}$”, Math. Res. Lett., 2:3 (1995), 563–575 | DOI | MR | Zbl

[2] Andersen H., Paradowski J., “Fusion categories arising from semi-simple Lie algebras”, Comm. Math. Phys., 169 (1995), 563–588 | DOI | MR | Zbl

[3] Bernstein J. N., Gelfand S. I., “Tensor products of finite and infinite dimensional representations of semi-simple Lie algebras”, Compositio Math., 41:2 (1980), 245–285 | MR | Zbl

[4] Deodhar V. V., Gabber O., Kac V. G., “Structure of some categories of representations of infinite dimensional Lie algebras”, Adv. Math., 45 (1982), 92–116 | DOI | MR | Zbl

[5] Drinfeld V. G., “O kvazitreugolnykh kvazikhopfovykh algebrakh i odnoi gruppe, tesno svyazannoi s $Gal(\bar{Q}/Q)$”, Algebra i analiz, 2:4 (1990), 149–181 | MR

[6] Dong C., Li H., Mason G., Vertex operator algebras associated to admissible representations of $\widehat{sl}_2$, Preprint | MR

[7] Duflo M., “Representations irreductibles des groupes semi-simples complexes”, Lect. Notes in Math., 497, 1975, 26–88 | DOI | MR | Zbl

[8] Enright T., “On the irreducibility of the fundamental series of a real semi-simple Lie algebra”, Ann. Math., 110 (1979), 1–82 | DOI | MR | Zbl

[9] Feigin B., Frenkel E., “Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras”, Int. J. Math. Phys. A, 7 (1992), 197–215, Supplement 1A | DOI | MR | Zbl

[10] Feigin B., Malikov F., “Fusion algebras and cohomology of a nilpotent subalgebra of an affine Lie algebra”, Lett. Math. Phys., 31 (1994), 315–325 | DOI | MR | Zbl

[11] Feigin B., Malikov F., “Modular functor and representation theory of $\widehat{sl}_{2}$ at a rational level”, “Operads: Proceedings of Renaissance Conferences”, Contemp. Math., 202, eds. J-L. Loday, J. Stasheff, and A. Voronov, 1997 | MR | Zbl

[12] Finkelberg M., Fusion Categories, Ph.D. Thesis, Harvard University, 1993 | MR

[13] Frenkel E., Kac V., Wakimoto M., “Characters and fusion rules for W-algebras via quantized Drinfeld–Sokolov reduction”, Commun. Math. Phys., 147 (1992), 295–328 | DOI | MR | Zbl

[14] Frenkel I. B., Lepowsky J., Meurman A., Vertex operator algebras and the monster, Academic Press, 1988 | MR

[15] Frenkel I. B., Zhu Y., “Vertex operator algebras associated to representations of affine and Virasoro algebras”, Duke Math. J., 66 (1992), 123–168 | DOI | MR | Zbl

[16] Jantzen J. C., Moduln mit einem hoschten Gewicht, Lect. Notes in Math., 750, Springer-Verlag, 1979 | DOI | MR | Zbl

[17] Jantzen J. C., Representations of Algebraic Groups, Pure Appl. Math., 131, Academic Press, 1987 | MR | Zbl

[18] Joseph A., “Dixmier's problem for Verma and principal series submodules”, J. London Math. Soc. (2), 20:2 (1979), 193–204 | DOI | MR | Zbl

[19] Kac V. G., Kazhdan D. A., “Structure of representations with highest weight of infinite dimensional Lie algebras”, Adv. Math., 34 (1979), 97–108 | DOI | MR | Zbl

[20] Kac V. G., Wakimoto M., “Modular invariant representations of infinite dimensional Lie algebras and superalgebras”, Proc. Nat. Acad. Sci. USA, 85:14 (1988), 4956–4960 | DOI | MR | Zbl

[21] Kazhdan D., Lusztig G., “Affine Lie algebras and quantum groups”, Internat. Math. Res. Notices, 1991, no. 2, 21–29 | DOI | MR | Zbl

[22] Kazhdan D., Lusztig G., “Tensor structures arising from affine algebras, I, II”, J. Amer. Math. Soc., 6:4 (1993), 905–947, 949–1011 | DOI | MR | Zbl

[23] Kazhdan D., Lusztig G., “Tensor structures arising from affine algebras, III, IV”, J. Amer. Math. Soc., 7:2 (1994), 335–381, 383–453 | DOI | MR | Zbl

[24] Lusztig G., “Nonlocal finiteness of a $W$-graph”, Electronic Journal of Representation Theory, 1 (1997), 25–30 | DOI | MR | Zbl

[25] Mircovič I., unpublished

[26] Ringel C. M., “The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences”, Math. Z., 208 (1991), 209–223 | DOI | MR

[27] Rocha A., Wallach N., “Projective modules over graded Lie algebras, I”, Math. Z., 180 (1982), 151–177 | DOI | MR | Zbl

[28] Vogan D., “Irreducible characters of semi-simple Lie groups”, Duke Math. J., 46 (1979), 61–108, 805–859 | DOI | MR | Zbl

[29] Zuckerman G., “Tensor products of finite and infinite dimensional representations of semi-simple Lie groups”, Ann. of Math., 106 (1977), 295–308 | DOI | MR | Zbl