Borg Type Theorems for First-Order Systems on a Finite Interval
Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 1, pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1999_33_1_a9,
     author = {M. M. Malamud},
     title = {Borg {Type} {Theorems} for {First-Order} {Systems} on a {Finite} {Interval}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--80},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a9/}
}
TY  - JOUR
AU  - M. M. Malamud
TI  - Borg Type Theorems for First-Order Systems on a Finite Interval
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1999
SP  - 75
EP  - 80
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a9/
LA  - ru
ID  - FAA_1999_33_1_a9
ER  - 
%0 Journal Article
%A M. M. Malamud
%T Borg Type Theorems for First-Order Systems on a Finite Interval
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1999
%P 75-80
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a9/
%G ru
%F FAA_1999_33_1_a9
M. M. Malamud. Borg Type Theorems for First-Order Systems on a Finite Interval. Funkcionalʹnyj analiz i ego priloženiâ, Tome 33 (1999) no. 1, pp. 75-80. http://geodesic.mathdoc.fr/item/FAA_1999_33_1_a9/

[1] Borg G., “Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78:1–2 (1946), 1–96 | DOI | MR | Zbl

[2] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR | Zbl

[3] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[4] Hochstadt H., Lieberman B., “An inverse Sturm-Liouville problem with mixed given data”, SIAM J. Appl. Math., 34 (1978), 676–680 | DOI | MR

[5] Malamud M. M., Trudy MMO, 55, 1994, 57–122 | MR | Zbl

[6] Malamud M. M., Dokl. RAN, 344:5 (1995), 601–604 | MR | Zbl

[7] Malamud M. M., UMN, 51:5 (1996), 143

[8] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve, Nauka, M., 1967

[9] Leibenzon Z. L., DAN SSSR, 145:3 (1962), 519–522 | MR | Zbl

[10] Gesztesy F., Simon B., “Inverse spectral analysis with partial information on the potential, I”, Helv. Phys. Acta, 70 (1997), 66–71 ; \toappearPart II | MR | Zbl

[11] Gesztezy F., Simon B., “Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators”, Trans Amer. Math. Soc., 348:1 (1996), 349–373 | DOI | MR

[12] Del Rio R., Gesztesy F., Simon B., “Inverse spectral analysis with partial information on the potential. III: Updating boundary conditions”, Internat. Math. Res. Notices, 15 (1997), 751–758 | DOI | MR | Zbl

[13] Yurko V. A., “Vosstanovlenie nesamosopryazhennykh differentsialnykh operatorov na poluosi po matritse Veilya”, Matem. sb., 182:3 (1991), 431–456 | MR