The Weierstrass Representation of Closed Surfaces in $\mathbb{R}^3$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 4, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_4_a4,
     author = {I. A. Taimanov},
     title = {The {Weierstrass} {Representation} of {Closed} {Surfaces} in $\mathbb{R}^3$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a4/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - The Weierstrass Representation of Closed Surfaces in $\mathbb{R}^3$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 49
EP  - 62
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a4/
LA  - ru
ID  - FAA_1998_32_4_a4
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T The Weierstrass Representation of Closed Surfaces in $\mathbb{R}^3$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 49-62
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a4/
%G ru
%F FAA_1998_32_4_a4
I. A. Taimanov. The Weierstrass Representation of Closed Surfaces in $\mathbb{R}^3$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 4, pp. 49-62. http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a4/

[1] Bobenko A., “Surfaces in terms of $2$ by $2$ matrices. Old and new integrable cases”, Harmonic maps and integrable systems, Aspects Math. E23, Vieweg, Braunschweig, 1994, 83–127 | DOI | MR | Zbl

[2] Dubrovin B. A., “Matrichnye konechnozonnye operatory”, Itogi nauki i tekhniki, Sovrem. problemy matematiki. Noveishie dostizheniya, 23, 1983, 33–78 | MR

[3] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Dover, New York, 1909 | MR

[4] Fay J., Theta functions on Riemann surfaces, Lect. Notes in Math., 352, Springer-Verlag, 1973 | DOI | MR | Zbl

[5] Grinevich P., Schmidt M. U., “Conformal invariant functionals on tori in $\mathbb{R}^3$”, J. Geom. Phys. (to appear)

[6] Hitchin N., “Harmonic maps from a $2$-torus into the $3$-sphere”, J. Differential Geom., 31 (1990), 627–710 | DOI | MR | Zbl

[7] Kamberov G., Pedit F., Pinkall U., “Bonnet pairs and isothermic surfaces”, Duke Math. J. (to appear) | MR

[8] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN, 77 (1951), 11–14 | Zbl

[9] Konopelchenko B. G., “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96 (1996), 9–52 | DOI | MR

[10] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–206 | MR

[11] Krichever I. M., “Spektralnaya teoriya dvumernykh periodicheskikh operatorov i ee prilozheniya”, UMN, 44:2 (1989), 121–184 | MR | Zbl

[12] Kuchment P. A., “Teoriya Floke dlya uravnenii v chastnykh proizvodnykh”, UMN, 37:4 (1982), 3–52 | MR | Zbl

[13] Milnor J., Morse Theory, Ann. of Math. Studies, 51, Princeton Univ. Press, Princeton, 1963 | MR | Zbl

[14] Pinkall U., Sterling I., “On the classification of constant mean curvature tori”, Ann. of Math., 130 (1989), 407–451 | DOI | MR | Zbl

[15] Previato E., “Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation”, Duke Math. J., 52 (1985), 329–377 | DOI | MR | Zbl

[16] Taimanov I. A., “Modified Novikov–Veselov equation and differential geometry of surfaces”, Amer. Math. Soc. Transl. Ser. 2, 179, 1997, 133–151 | MR | Zbl

[17] Taimanov I. A., “Surfaces of revolution in terms of solitons”, Ann. Global Anal. Geom., 15 (1997), 419–435 | DOI | MR | Zbl

[18] Taimanov I. A., “Globalnoe predstavlenie Veiershtrassa i ego spektr”, UMN, 52:6 (1997), 187–188 | DOI | MR | Zbl

[19] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye operatory Shrëdingera. Potentsialnye operatory”, DAN, 279 (1984), 784–788 | MR | Zbl

[20] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye potentsialnye operatory Shrëdingera. Tochnye formuly i evolyutsionnye uravneniya”, DAN, 279 (1984), 20–24 | MR | Zbl