Support Varieties for Quantum Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 4, pp. 22-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1998_32_4_a2,
     author = {V. V. Ostrik},
     title = {Support {Varieties} for {Quantum} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--34},
     publisher = {mathdoc},
     volume = {32},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a2/}
}
TY  - JOUR
AU  - V. V. Ostrik
TI  - Support Varieties for Quantum Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1998
SP  - 22
EP  - 34
VL  - 32
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a2/
LA  - ru
ID  - FAA_1998_32_4_a2
ER  - 
%0 Journal Article
%A V. V. Ostrik
%T Support Varieties for Quantum Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1998
%P 22-34
%V 32
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a2/
%G ru
%F FAA_1998_32_4_a2
V. V. Ostrik. Support Varieties for Quantum Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 32 (1998) no. 4, pp. 22-34. http://geodesic.mathdoc.fr/item/FAA_1998_32_4_a2/

[1] Andersen H. H., “Tensor products of quantized tilting modules”, Commun. Math. Phys., 149 (1992), 149–159 | DOI | MR | Zbl

[2] Andersen H. H., Polo P., Wen K., “Representations of quantum algebras”, Invent. Math., 104 (1991), 1–59 | DOI | MR | Zbl

[3] Friedlander E. M., Parshall B. J., “Support varieties for restricted Lie algebras”, Invent. Math., 86 (1986), 553–562 | DOI | MR | Zbl

[4] Friedlander E. M., Parshall B. J., “Geometry of $p$-unipotent Lie algebras”, J. Algebra, 109 (1987), 25–45 | DOI | MR | Zbl

[5] Ginzburg V., Kumar S., “Cohomology of quantum groups at roots of unity”, Duke Math. J., 69:1 (1993), 179–198 | DOI | MR | Zbl

[6] Chriss N., Ginzburg V., Representation theory and complex geometry, Birkhäuser, Boston, 1997 | MR | Zbl

[7] Humphreys J. E., “Comparing modular representations of semisimple groups and their Lie algebras”, Modular Interfaces: Modular Lie Algebras, Quantum Groups, and Lie Superalgebras, In volume dedicated to R. E. Block, eds. V. Chari and I. Penkov, International Press, 1997 | MR | Zbl

[8] Jantzen J. C., “Kohomologie von $p$-Lie-Algebren und nilpotent Elemente”, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 191–219 | DOI | MR | Zbl

[9] Jantzen J. C., “Support varieties of Weyl modules”, Bull. London Math. Soc., 19 (1987), 238–244 | DOI | MR | Zbl

[10] Jantzen J. C., Representations of algebraic groups, Academic Press, Orlando, 1987 | MR | Zbl

[11] Lusztig G., “Finite dimensional Hopf algebras arising from quantized universal enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 257–296 | DOI | MR | Zbl

[12] Lusztig G., “Cells in affine Weyl group”, Algebraic groups and related topics, Advanced Studies in Pure Math., 6, Kinokuniya and North Holland, Tokyo and Amsterdam, 1985 ; II J. Algebra, 109 (1987), 536–548 ; III J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34 (1987), 223–243 ; IV J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 297–328 | MR | DOI | MR | Zbl | MR | Zbl | MR | Zbl

[13] Lusztig G., Introduction to quantum groups, Birkhäuser, Boston, 1993 | MR | Zbl

[14] Lusztig G., Xi N., “Canonical left cells in affine Weyl group”, Adv. Math., 72 (1988), 284–288 | DOI | MR | Zbl

[15] Ostrik V., “Tensor ideals in category of tilting modules”, Transformation groups, 2:3 (1997), 279–287 | DOI | MR | Zbl

[16] Soergel W., “Kazhdan–Lusztig-Polynome und eine Kombinatorik für Kipp–Moduln”, Electronic Representation Theory, 1 (1997), 37–68 | DOI | MR | Zbl

[17] Soergel W., “Charakterformeln für Kipp–Moduln über Kac–Moody-Algebren”, Electronic Representation Theory, 1 (1997), 115–136 | DOI | MR

[18] Shi J. Y., The Kazhdan–Lusztig cells in certain affine Weyl groups, Lect. Notes in Math., 1179, Springer-Verlag, Berlin–Heidelberg–New York, 1986 | DOI | MR