A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry
Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 3, pp. 74-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1997_31_3_a7,
     author = {V. M. Kadets},
     title = {A {Generalization} of a {Daugavet} {Theorem} with {Applications} to the {Space} $C$ {Geometry}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {74--76},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a7/}
}
TY  - JOUR
AU  - V. M. Kadets
TI  - A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1997
SP  - 74
EP  - 76
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a7/
LA  - ru
ID  - FAA_1997_31_3_a7
ER  - 
%0 Journal Article
%A V. M. Kadets
%T A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1997
%P 74-76
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a7/
%G ru
%F FAA_1997_31_3_a7
V. M. Kadets. A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 3, pp. 74-76. http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a7/

[1] Daugavet I. K., “Ob odnom svoistve vpolne nepreryvnykh operatorov v prostranstve $C$”, UMN, 18:5 (1963), 157–158 | MR | Zbl

[2] Foias C., Singer I., “Points of diffusion of linear operators and almost diffuse operators in spaces of continuous functions”, Math. Z., 87 (1965), 434–450 | DOI | MR | Zbl

[3] Babenko V. F., Pichugov S. A., Ukr. matem. zh., 33:4 (1981), 374–376 | MR | Zbl

[4] Holub J. R., “A property of weakly compact operators on $C[0,1]$”, Proc. Amer. Math. Soc., 97 (1986), 396–398 | DOI | MR | Zbl

[5] Holub J. R., “Daugavet's equation and operators on $L^1(\mu)$”, Proc. Amer. Math. Soc., 100 (1987), 295–300 | DOI | MR | Zbl

[6] Abramovich Yu., “New classes of spaces on which compact operators satisfy the Daugavet equation”, J. Operator Theory, 25 (1991), 331–345 | MR | Zbl

[7] Wojtaszczyk P., “Some remarks on the Daugavet equation”, Proc. Amer. Math. Soc., 115 (1992), 1047–1052 | DOI | MR | Zbl

[8] Ansari S. I., “Essential disjointness and the Daugavet equation”, Houston J. Math., 19 (1993), 587–601 | MR | Zbl

[9] Kadets V. M., Popov M. M., Algebra i analiz, 8:4 (1996), 43–62 | MR | Zbl