Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1997_31_3_a7, author = {V. M. Kadets}, title = {A {Generalization} of a {Daugavet} {Theorem} with {Applications} to the {Space} $C$ {Geometry}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {74--76}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a7/} }
TY - JOUR AU - V. M. Kadets TI - A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1997 SP - 74 EP - 76 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a7/ LA - ru ID - FAA_1997_31_3_a7 ER -
V. M. Kadets. A Generalization of a Daugavet Theorem with Applications to the Space $C$ Geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 3, pp. 74-76. http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a7/
[1] Daugavet I. K., “Ob odnom svoistve vpolne nepreryvnykh operatorov v prostranstve $C$”, UMN, 18:5 (1963), 157–158 | MR | Zbl
[2] Foias C., Singer I., “Points of diffusion of linear operators and almost diffuse operators in spaces of continuous functions”, Math. Z., 87 (1965), 434–450 | DOI | MR | Zbl
[3] Babenko V. F., Pichugov S. A., Ukr. matem. zh., 33:4 (1981), 374–376 | MR | Zbl
[4] Holub J. R., “A property of weakly compact operators on $C[0,1]$”, Proc. Amer. Math. Soc., 97 (1986), 396–398 | DOI | MR | Zbl
[5] Holub J. R., “Daugavet's equation and operators on $L^1(\mu)$”, Proc. Amer. Math. Soc., 100 (1987), 295–300 | DOI | MR | Zbl
[6] Abramovich Yu., “New classes of spaces on which compact operators satisfy the Daugavet equation”, J. Operator Theory, 25 (1991), 331–345 | MR | Zbl
[7] Wojtaszczyk P., “Some remarks on the Daugavet equation”, Proc. Amer. Math. Soc., 115 (1992), 1047–1052 | DOI | MR | Zbl
[8] Ansari S. I., “Essential disjointness and the Daugavet equation”, Houston J. Math., 19 (1993), 587–601 | MR | Zbl
[9] Kadets V. M., Popov M. M., Algebra i analiz, 8:4 (1996), 43–62 | MR | Zbl