An Analog of the Harer--Zagier Formula for Unicellular Bicolored Maps
Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 3, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1997_31_3_a0,
     author = {N. M. Adrianov},
     title = {An {Analog} of the {Harer--Zagier} {Formula} for {Unicellular} {Bicolored} {Maps}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a0/}
}
TY  - JOUR
AU  - N. M. Adrianov
TI  - An Analog of the Harer--Zagier Formula for Unicellular Bicolored Maps
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1997
SP  - 1
EP  - 9
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a0/
LA  - ru
ID  - FAA_1997_31_3_a0
ER  - 
%0 Journal Article
%A N. M. Adrianov
%T An Analog of the Harer--Zagier Formula for Unicellular Bicolored Maps
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1997
%P 1-9
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a0/
%G ru
%F FAA_1997_31_3_a0
N. M. Adrianov. An Analog of the Harer--Zagier Formula for Unicellular Bicolored Maps. Funkcionalʹnyj analiz i ego priloženiâ, Tome 31 (1997) no. 3, pp. 1-9. http://geodesic.mathdoc.fr/item/FAA_1997_31_3_a0/

[1] Harer J., Zagier D., “The Euler characteristic of the moduli space of curves”, Inv. Math., 85:3 (1986), 457–485 | DOI | MR | Zbl

[2] Penner R. C., “The moduli space of a punctured surface and perturbative series”, Bull. Amer. Math. Soc., New Ser., 15:1 (1986), 73–77 | DOI | MR | Zbl

[3] Kontsevich M., “Teoriya peresecheniya na prostranstve modulei krivykh”, Funkts. analiz i ego pril., 25:2 (1991), 50–57 | MR | Zbl

[4] Looijenga E., “Cellular decompositions of compactified moduli spaces of pointed curves”, The moduli space of curves (Texel Island, 1994), Progr. Math., 129, 1995, 369–400 | MR | Zbl

[5] Penner R. C., “Perturbative series and the moduli space of punctured surfaces”, J. Diff. Geom., 27 (1988), 35–53 | MR | Zbl

[6] Zagier D., “On the distribution of the number of cycles of elements in symmetric groups”, Nieuw Arch. Wisk. (4), 13:3 (1995), 489–495 | MR | Zbl

[7] Harary F., Tutte W. T., “The number of plane trees with a given partition”, Mathematika (London), 11:2 (1964), 99–101 | DOI | MR | Zbl

[8] Cori R., Machì A., “Maps hypermaps and their automorphisms: a survey I, II, III”, Expositiones Math., 10 (1992), 403–427, 429–447, 449–467 | MR | Zbl

[9] Jones G., Characters and surfaces, Preprint | MR

[10] Gorenstein D., Finite groups, 2nd ed., Chelsea Publishing Company, New York, 1980 | MR | Zbl

[11] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam: Tochnye resheniya, Nauka, M., 1995 | MR

[12] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, 2-e izd., Fizmatgiz, M., 1961 | MR

[13] Gurvich V. A., Shabat G. B., “Reshenie uravneniya Kharera–Tsagira”, UMN, 48:1 (1993), 159–160 | MR | Zbl