Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1996_30_4_a2, author = {S. M. Natanzon}, title = {Moduli {Spaces} of {Real} {Algebraic} $N=2$ {Supercurves}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {19--30}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a2/} }
S. M. Natanzon. Moduli Spaces of Real Algebraic $N=2$ Supercurves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 19-30. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a2/
[1] Baranov M. A., Shvarts A. S., “O mnogopetlevom vklade v teorii struny”, Pisma v ZhETF, 42:8 (1985), 340–342 | MR
[2] Manin Yu. I., “Superalgebraicheskie krivye i kvantovye struny”, Trudy MIAN SSSR, 183, 1990, 126–138 | MR
[3] Natanzon S. M., “Moduli veschestvennykh algebraicheskikh krivykh”, Trudy Mosk. matem. o-va, 37, 1978, 219–253 | MR | Zbl
[4] Natanzon S. M., “Prostranstvo modulei rimanovykh superpoverkhnostei”, Matem. zametki, 45:4 (1989), 111–116 | MR
[5] Natanzon S. M., “Kleinovy superpoverkhnosti”, Matem. zametki, 48:2 (1990), 72–82 | MR
[6] Natanzon S. M., “Kleinovy poverkhnosti”, UMN, 45:6 (1990), 47–90 | MR | Zbl
[7] Natanzon S. M., “Klassifikatsiya par funktsii Arfa na orientiruemykh i neorientiruemykh poverkhnostyakh”, Funkts. analiz i ego pril., 28:3 (1994), 35–46 | MR | Zbl
[8] Atiyah M., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4:1 (1971), 47–62 | DOI | MR | Zbl
[9] Bujalance E., Costa A. F., Natanzon S. M., Singerman D., “Involutions of compact Klein surfaces”, Math. Z., 211 (1992), 461–478 | DOI | MR | Zbl
[10] Friedan D., Notes on string theory and two dimensional conformal field theory, Proc. Workshop on Unified String Theories, Institute for Theoretical Physics, Santa Barbara, 1985 | MR | Zbl
[11] Gepner D., “Space-time supersymmetry in compactified string theory and superconformal models”, Nuclear Phys B, 296 (1988), 757–779 | DOI | MR
[12] Mumford D., “Theta characteristics of an algebraic curve”, Ann. Sci. Ecole. Norm. Sup. (4), 4:2 (1971), 181–192 | DOI | MR | Zbl
[13] Natanzon S. M., “Moduli spaces of Riemann $N=1$ and $N=2$ supersurfaces”, J. Geom. Phys., 12 (1993), 35–54 | DOI | MR | Zbl
[14] Natanzon S. M., “Moduli spaces of Riemann and Klein supersurfaces”, Development of Modern Mathematics, Moscow School, eds. V. Arnold and M. Monastyrsky, Chapman and Hall, England, 1993, 100–130 | MR | Zbl