Moduli Spaces of Real Algebraic $N=2$ Supercurves
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 19-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_4_a2,
     author = {S. M. Natanzon},
     title = {Moduli {Spaces} of {Real} {Algebraic} $N=2$ {Supercurves}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a2/}
}
TY  - JOUR
AU  - S. M. Natanzon
TI  - Moduli Spaces of Real Algebraic $N=2$ Supercurves
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 19
EP  - 30
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a2/
LA  - ru
ID  - FAA_1996_30_4_a2
ER  - 
%0 Journal Article
%A S. M. Natanzon
%T Moduli Spaces of Real Algebraic $N=2$ Supercurves
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 19-30
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a2/
%G ru
%F FAA_1996_30_4_a2
S. M. Natanzon. Moduli Spaces of Real Algebraic $N=2$ Supercurves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 4, pp. 19-30. http://geodesic.mathdoc.fr/item/FAA_1996_30_4_a2/

[1] Baranov M. A., Shvarts A. S., “O mnogopetlevom vklade v teorii struny”, Pisma v ZhETF, 42:8 (1985), 340–342 | MR

[2] Manin Yu. I., “Superalgebraicheskie krivye i kvantovye struny”, Trudy MIAN SSSR, 183, 1990, 126–138 | MR

[3] Natanzon S. M., “Moduli veschestvennykh algebraicheskikh krivykh”, Trudy Mosk. matem. o-va, 37, 1978, 219–253 | MR | Zbl

[4] Natanzon S. M., “Prostranstvo modulei rimanovykh superpoverkhnostei”, Matem. zametki, 45:4 (1989), 111–116 | MR

[5] Natanzon S. M., “Kleinovy superpoverkhnosti”, Matem. zametki, 48:2 (1990), 72–82 | MR

[6] Natanzon S. M., “Kleinovy poverkhnosti”, UMN, 45:6 (1990), 47–90 | MR | Zbl

[7] Natanzon S. M., “Klassifikatsiya par funktsii Arfa na orientiruemykh i neorientiruemykh poverkhnostyakh”, Funkts. analiz i ego pril., 28:3 (1994), 35–46 | MR | Zbl

[8] Atiyah M., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4:1 (1971), 47–62 | DOI | MR | Zbl

[9] Bujalance E., Costa A. F., Natanzon S. M., Singerman D., “Involutions of compact Klein surfaces”, Math. Z., 211 (1992), 461–478 | DOI | MR | Zbl

[10] Friedan D., Notes on string theory and two dimensional conformal field theory, Proc. Workshop on Unified String Theories, Institute for Theoretical Physics, Santa Barbara, 1985 | MR | Zbl

[11] Gepner D., “Space-time supersymmetry in compactified string theory and superconformal models”, Nuclear Phys B, 296 (1988), 757–779 | DOI | MR

[12] Mumford D., “Theta characteristics of an algebraic curve”, Ann. Sci. Ecole. Norm. Sup. (4), 4:2 (1971), 181–192 | DOI | MR | Zbl

[13] Natanzon S. M., “Moduli spaces of Riemann $N=1$ and $N=2$ supersurfaces”, J. Geom. Phys., 12 (1993), 35–54 | DOI | MR | Zbl

[14] Natanzon S. M., “Moduli spaces of Riemann and Klein supersurfaces”, Development of Modern Mathematics, Moscow School, eds. V. Arnold and M. Monastyrsky, Chapman and Hall, England, 1993, 100–130 | MR | Zbl