The Associativity Equations in the Two-Dimensional Topological Field Theory as Integrable Hamiltonian
Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 3, pp. 62-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1996_30_3_a5,
     author = {O. I. Mokhov and E. V. Ferapontov},
     title = {The {Associativity} {Equations} in the {Two-Dimensional} {Topological} {Field} {Theory} as {Integrable} {Hamiltonian}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--72},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a5/}
}
TY  - JOUR
AU  - O. I. Mokhov
AU  - E. V. Ferapontov
TI  - The Associativity Equations in the Two-Dimensional Topological Field Theory as Integrable Hamiltonian
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1996
SP  - 62
EP  - 72
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a5/
LA  - ru
ID  - FAA_1996_30_3_a5
ER  - 
%0 Journal Article
%A O. I. Mokhov
%A E. V. Ferapontov
%T The Associativity Equations in the Two-Dimensional Topological Field Theory as Integrable Hamiltonian
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1996
%P 62-72
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a5/
%G ru
%F FAA_1996_30_3_a5
O. I. Mokhov; E. V. Ferapontov. The Associativity Equations in the Two-Dimensional Topological Field Theory as Integrable Hamiltonian. Funkcionalʹnyj analiz i ego priloženiâ, Tome 30 (1996) no. 3, pp. 62-72. http://geodesic.mathdoc.fr/item/FAA_1996_30_3_a5/

[1] Dubrovin B., Geometry of 2D topological field theories, Preprint SISSA–89/94/FM, SISSA, Trieste, 1994 | MR | Zbl

[2] Mokhov O. I., “Differential equations of associativity in 2D topological field theories and geometry of nondiagonalizable systems of hydrodynamic type”, Abstracts of Internat. Conference on Integrable Systems “Nonlinearity and Integrability: from Mathematics to Physics,” (February 21–24, 1995, Montpellier, France), 1995 | MR

[3] Mokhov O. I., “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in topology and mathematical physics, Transl. Am. Math. Soc., Ser. 2, 170, ed. S. P. Novikov, Am. Math. Soc., Providence, 1995, 121–151 ; arXiv: /hep-th/9503076 | MR | Zbl

[4] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR, Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[5] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[6] Ferapontov E. V., “On integrability of $3\times3$ semi-Hamiltonian hydrodynamic type systems which do not possess Riemann invariants”, Phys. D, 63 (1993), 50–70 | DOI | MR | Zbl

[7] Ferapontov E. V., “On the matrix Hopf equation and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, Phys. Lett. A, 179 (1993), 391–397 | DOI | MR

[8] Ferapontov E. V., “Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type which do not possess Riemann invariants”, Diff. Geom. Appl., 5 (1995), 121–152 | DOI | MR | Zbl

[9] Ferapontov E. V., “Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, Teor. mat. fiz., 99:2 (1994), 257–262 | MR | Zbl

[10] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nuclear Phys. B, 340 (1990), 281–332 | DOI | MR

[11] Dijkgraaf R., Verlinde H., Verlinde E., “Topological strings in $d1$”, Nuclear Phys. B, 352 (1991), 59–86 | DOI | MR

[12] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Diff. Geom., 1 (1991), 243–310 | DOI | MR

[13] Dubrovin B., “Integrable systems in topological field theory”, Nuclear Phys. B, 379 (1992), 627–689 | DOI | MR

[14] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl

[15] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl

[16] Mokhov O. I., “Hamiltonian systems of hydrodynamic type and constant curvature metrics”, Phys. Lett. A, 166 (1992), 215–216 | DOI | MR

[17] Mokhov O. I., Nutku Y., “Bianchi transformation between the real hyperbolic Monge–Ampère equation and the Born–Infeld equation”, Lett. Math. Phys., 32:2 (1994), 121–123 | DOI | MR | Zbl