Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent
Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 3, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1995_29_3_a0,
     author = {A. V. Bolsinov and A. T. Fomenko},
     title = {Orbital {Classification} of {Geodesic} {Flows} on {Two-Dimensional} {Ellipsoids.} {The} {Jacobi} {Problem} is {Orbitally} {Equivalent}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. T. Fomenko
TI  - Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1995
SP  - 1
EP  - 15
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/
LA  - ru
ID  - FAA_1995_29_3_a0
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. T. Fomenko
%T Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1995
%P 1-15
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/
%G ru
%F FAA_1995_29_3_a0
A. V. Bolsinov; A. T. Fomenko. Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 3, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/

[1] Yakobi K., Lektsii po dinamike, M.-L., 1936

[2] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, 1980 | MR | Zbl

[3] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR, 50:6 (1986), 1276–1307 | MR | Zbl

[4] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR, 54:3 (1990), 546–575 | MR | Zbl

[5] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, UMN, 45:2 (1990), 49–77 | MR

[6] Fomenko A. T., “Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom”, The Geometry of Hamiltonian Systems, Proc. of a Workshop Held (June 5–16, 1989), Springer-Verlag, 1991, 131–339 | DOI | MR

[7] Topological Classification of Integrable Systems, Adv. Sov. Math., 6, ed. A. T. Fomenko, Am. Math. Soc., 1991 | MR

[8] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Adv. Sov. Math., 6, Am. Math. Soc., 1991, 147–183 | MR | Zbl

[9] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Adv. Sov. Math., 6, Am. Math. Soc., 1991, 67–146. | MR | Zbl

[10] Kozlov V. V., Fedorov Yu. N., Memoire on Integrable Systems, Springer-Verlag (to appear)

[11] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh sistem tipa Eilera v dinamike tverdogo tela”, UMN, 48:5 (1993), 163–164 | MR | Zbl

[12] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii, I, II”, Matem. sb., 185:4 (1994), 27–80 | MR | Zbl

[13] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl

[14] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy, II”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 151–242 | MR

[15] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955) | Zbl

[16] Umanskii Ya. L., “Skhema trekhmernoi dinamicheskoi sistemy Morsa–Smeila bez zamknutykh traektorii”, DAN SSSR, 230:6 (1976), 1286–1289 | MR | Zbl

[17] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–149 | MR

[18] Peixoto M. M., “On the classification of flows of $2$-manifolds”, Dynamical Systems, Proc. Symp. Univ. of Bahia, Acad. Press, New York–London, 1973, 389–419 | MR

[19] Kozlov V. V., “Dve integriruemye zadachi klassicheskoi dinamiki”, Vestnik MGU, ser. matem., 1981, no. 4, 80–83 | MR | Zbl