Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1995_29_3_a0, author = {A. V. Bolsinov and A. T. Fomenko}, title = {Orbital {Classification} of {Geodesic} {Flows} on {Two-Dimensional} {Ellipsoids.} {The} {Jacobi} {Problem} is {Orbitally} {Equivalent}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--15}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/} }
TY - JOUR AU - A. V. Bolsinov AU - A. T. Fomenko TI - Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1995 SP - 1 EP - 15 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/ LA - ru ID - FAA_1995_29_3_a0 ER -
%0 Journal Article %A A. V. Bolsinov %A A. T. Fomenko %T Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent %J Funkcionalʹnyj analiz i ego priloženiâ %D 1995 %P 1-15 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/ %G ru %F FAA_1995_29_3_a0
A. V. Bolsinov; A. T. Fomenko. Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 3, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_1995_29_3_a0/
[1] Yakobi K., Lektsii po dinamike, M.-L., 1936
[2] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, 1980 | MR | Zbl
[3] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR, 50:6 (1986), 1276–1307 | MR | Zbl
[4] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR, 54:3 (1990), 546–575 | MR | Zbl
[5] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, UMN, 45:2 (1990), 49–77 | MR
[6] Fomenko A. T., “Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom”, The Geometry of Hamiltonian Systems, Proc. of a Workshop Held (June 5–16, 1989), Springer-Verlag, 1991, 131–339 | DOI | MR
[7] Topological Classification of Integrable Systems, Adv. Sov. Math., 6, ed. A. T. Fomenko, Am. Math. Soc., 1991 | MR
[8] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Adv. Sov. Math., 6, Am. Math. Soc., 1991, 147–183 | MR | Zbl
[9] Oshemkov A. A., “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Adv. Sov. Math., 6, Am. Math. Soc., 1991, 67–146. | MR | Zbl
[10] Kozlov V. V., Fedorov Yu. N., Memoire on Integrable Systems, Springer-Verlag (to appear)
[11] Bolsinov A. V., Fomenko A. T., “Traektornaya klassifikatsiya integriruemykh sistem tipa Eilera v dinamike tverdogo tela”, UMN, 48:5 (1993), 163–164 | MR | Zbl
[12] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii, I, II”, Matem. sb., 185:4 (1994), 27–80 | MR | Zbl
[13] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl
[14] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy, II”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 151–242 | MR
[15] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955) | Zbl
[16] Umanskii Ya. L., “Skhema trekhmernoi dinamicheskoi sistemy Morsa–Smeila bez zamknutykh traektorii”, DAN SSSR, 230:6 (1976), 1286–1289 | MR | Zbl
[17] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–149 | MR
[18] Peixoto M. M., “On the classification of flows of $2$-manifolds”, Dynamical Systems, Proc. Symp. Univ. of Bahia, Acad. Press, New York–London, 1973, 389–419 | MR
[19] Kozlov V. V., “Dve integriruemye zadachi klassicheskoi dinamiki”, Vestnik MGU, ser. matem., 1981, no. 4, 80–83 | MR | Zbl