Multiple Mixing and Local Rank of Dynamical Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 2, pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1995_29_2_a14,
     author = {V. V. Ryzhikov},
     title = {Multiple {Mixing} and {Local} {Rank} of {Dynamical} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a14/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Multiple Mixing and Local Rank of Dynamical Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1995
SP  - 88
EP  - 91
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a14/
LA  - ru
ID  - FAA_1995_29_2_a14
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Multiple Mixing and Local Rank of Dynamical Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1995
%P 88-91
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a14/
%G ru
%F FAA_1995_29_2_a14
V. V. Ryzhikov. Multiple Mixing and Local Rank of Dynamical Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 2, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_1995_29_2_a14/

[1] Kalikow S. A., “Twofold mixing implies threefold mixing for rank one transformations”, Ergodic Theory Dynamical Systems, 4 (1984), 237–259 | DOI | MR | Zbl

[2] King J. L., Ergodic properties where order $4$ implies infinite order, Preprint, 1990 | MR

[3] Ledrappier F., “Un champ markovien peut etre d'entropie nulle et melangeant”, C. R. Acad. Sci. Paris Sér. A, 287 (1978), 561–563 | MR | Zbl

[4] Rokhlin V. A., Izvestiya AN SSSR, 13 (1949), 329–340 | MR | Zbl

[5] Ryzhikov V. V., “Dzhoiningi i kratnoe peremeshivanie deistvii konechnogo ranga”, Funkts. analiz i ego pril., 27:2 (1993), 63–78 | MR | Zbl

[6] Ryzhikov V. V., “Peremeshivanie, rang i minimalnoe samoprisoedinenie deistvii s invariantnoi meroi”, Matem. sb., 183:3 (1992), 133–160 | MR