Higher Operations on the Hochschild Complex
Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1995_29_1_a0,
     author = {A. A. Voronov and M. Gerstenhaber},
     title = {Higher {Operations} on the {Hochschild} {Complex}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1995_29_1_a0/}
}
TY  - JOUR
AU  - A. A. Voronov
AU  - M. Gerstenhaber
TI  - Higher Operations on the Hochschild Complex
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1995
SP  - 1
EP  - 6
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1995_29_1_a0/
LA  - ru
ID  - FAA_1995_29_1_a0
ER  - 
%0 Journal Article
%A A. A. Voronov
%A M. Gerstenhaber
%T Higher Operations on the Hochschild Complex
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1995
%P 1-6
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1995_29_1_a0/
%G ru
%F FAA_1995_29_1_a0
A. A. Voronov; M. Gerstenhaber. Higher Operations on the Hochschild Complex. Funkcionalʹnyj analiz i ego priloženiâ, Tome 29 (1995) no. 1, pp. 1-6. http://geodesic.mathdoc.fr/item/FAA_1995_29_1_a0/

[1] Chen K. T., “Iterated integrals of differential forms and loop space homology”, Ann. Math., 97 (1973), 217–246 | DOI | MR | Zbl

[2] Cohen F. R., “The homology of $\mathcal C_{n+1}$-spaces, $n\ge0$”, The homology of iterated loop spaces, Lecture Notes in Math., 533, Springer-Verlag, Berlin, 1976, 207–351 | DOI | MR

[3] Deligne P., Letter to Stasheff, Gerstenhaber, May, Schechtman, Drinfeld, 1993 | Zbl

[4] Gerstenhaber M., “The cohomology structure of an associative ring”, Ann. of Math., 78 (1963), 267–288 | DOI | MR | Zbl

[5] Getzler E., “Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology”, Israel Math. Conf. Proc., 7 (1993), 65–78 | MR | Zbl

[6] Getzler E., Two-dimensional topological gravity and equivariant cohomology, Preprint Department of Mathematics, MIT, 1993 ; arXiv: /hep-th/9305013 | MR

[7] Getzler E., Jones J. D. S., Operads, homotopy algebra and iterated integrals for double loop spaces, Preprint Department of Mathematics, MIT, March, 1994 ; arXiv: /hep-th/9403055 | MR

[8] Ginzburg V., Kapranov M., Koszul duality for operads, Preprint, Northwestern University, 1993 | MR

[9] Huang Y.-Z., Operadic formulation of topological vertex algebras and Gerstenhaber or Batalin–Vilkovisky algebras, Preprint, University of Pennsylvania, June, 1993 ; ; Comm. Math. Phys. (to appear) arXiv: /hep-th/9306021 | MR

[10] Jones J. D. S., “Cyclic homology and equivariant homology”, Invent. Math., 87 (1987), 403–423 | DOI | MR | Zbl

[11] Kimura T., Stasheff J., Voronov A. A., On operad structures of moduli spaces and string theory, Preprint 936 RIMS, Kyoto University, Kyoto, Japan, July, 1993 ; arXiv: /hep-th/9307114 | MR

[12] Kontsevich M., “Formal (non)-commutative symplectic geometry”, The Gelfand mathematical seminars, 1990–1992, eds. L. Corwin, I. Gelfand, and J. Lepowsky, Birkhauser, 1993, 173–187 | DOI | MR | Zbl

[13] Lian B. H., Zuckerman G. J., “New perspectives on the BRST-algebraic structure of string theory”, Commun. Math. Phys., 154 (1993), 613–646 | DOI | MR | Zbl

[14] Witten E., Zwiebach B., “Algebraic structures and differential geometry in two-dimensional string theory”, Nuclear Phys. B, 377 (1992), 55–112 | DOI | MR

[15] Zwiebach B., “Closed string field theory: Quantum action and the Batalin–Vilkovisky master equation”, Nuclear Phys. B, 390 (1993), 33–152 | DOI | MR