Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1994_28_4_a1, author = {M. V. Karasev and M. B. Kozlov}, title = {Representations of {Compact} {Semisimple} {Lie} {Algebras} over {Lagrangian} {Submanifolds}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {16--27}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1994_28_4_a1/} }
TY - JOUR AU - M. V. Karasev AU - M. B. Kozlov TI - Representations of Compact Semisimple Lie Algebras over Lagrangian Submanifolds JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1994 SP - 16 EP - 27 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1994_28_4_a1/ LA - ru ID - FAA_1994_28_4_a1 ER -
M. V. Karasev; M. B. Kozlov. Representations of Compact Semisimple Lie Algebras over Lagrangian Submanifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 4, pp. 16-27. http://geodesic.mathdoc.fr/item/FAA_1994_28_4_a1/
[1] Kirillov A. A., “Geometricheskoe kvantovanie”, Sovrem. probl. matem. Fundam. napravl., 4, VINITI, M., 1985, 141–178 | MR
[2] Souriau J. M., Geometrie symplectique et physique mathematique, Paris, 1975 | MR
[3] Sniatycki J., Geometric quantization and quantum mechanics, Springer-Verlag, New York, 1980 | MR | Zbl
[4] Woodhouse N., Geometric quantization, Oxford, 1991 | MR
[5] Karasev M. V., “Svyaznosti na lagranzhevykh mnogoobraziyakh i nekotorye zadachi kvaziklassicheskogo priblizheniya”, Zapiski nauchnykh seminarov LOMI, 172, 1989, 41–54 | MR
[6] Karasev M. V., “Simple quantization formula”, Symplectic Geom. and Math. Phys., Progr. Math., 99, Birkhauser, Boston, 1991, 234–244 | MR
[7] Karasev M. V., “Integrals over membranes, transition amplitudes and quantization”, Russ. J. Math. Phys., 1:4 (1993), 523–526 | MR | Zbl
[8] Karasev M. V., “Puassonovskie algebry simmetrii i asimptotika spektralnykh serii”, Funkts. analiz i ego pril., 20:1 (1986), 21–32 | MR | Zbl
[9] Berezin F. A., “Kvantovanie”, Izv. AN SSSR, ser. matem., 38:5 (1974), 1116–1175 | MR | Zbl
[10] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR
[11] Onofri E., “A note on coherent state representations of Lie groups”, J. Math. Phys., 16 (1973), 1087–1089 | DOI | MR
[12] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, M., 1965
[13] Karasev M. V., Maslov V. P., “Psevdodifferentsialnye operatory i kanonicheskii operator v obschikh simplekticheskikh mnogoobraziyakh”, Izv. AN. SSSR, 47:5 (1983), 999–1029 | MR | Zbl
[14] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl
[15] Karasev M. V., “Novye globalnye asimptotiki i anomalii v zadache kvantovaniya adiabaticheskogo invarianta”, Funkts. analiz i ego pril., 24:2 (1990), 104–114 | MR | Zbl
[16] Karasev M. V., “Quantization by parallel translation. Global formula for semiclassical wavefunctions”, Quantum field theory, quantum mechanics and quantum optics, Proc. 18th Intern. Coll. on Group Theor. Methods in Physics, Nova Sci. Publ., New York, 1991, 189–192
[17] Karasev M. V., Vorobjev Yu. M., Integral representations over isotropic submanifolds and equations of zero curvature, Preprint/Moscow Inst. Electr. and Math., A Math-92-01, 1992 (to appear) | MR
[18] Babich V. M., “Mnogomernyi metod VKB i luchevoi metod”, Sovrem. probl. matem. Fundam. napravl., 34, VINITI, M., 1988, 93–134 | MR
[19] Klauder J. R., “Global uniform semiclassical approximation to wave equation”, Phys. Rev. Lett., 56:9 (1986), 897–899 | DOI | MR
[20] Heller E. J., “Time dependent approach to semiclassical dynamics”, J. Chem. Phys., 62 (1975), 1544–1555 | DOI | MR
[21] Voros A., “Wentzel–Kramers–Brillouin method in the Bargmann representation”, Phys. Rev. A, 40:12 (1989), 6814–6825 | DOI | MR
[22] Kurchan J., Leboeuf P., Saraceno M., “Semiclassical approximations in the coherent-state representation”, Phys. Rev. A, 40 (1989), 6800–6813 | DOI | MR
[23] Karasev M. V., Kozlov M. B., “Quantum and semiclassical representations over Lagrangian submanifolds in $\operatorname{su}(2)^*$, $\operatorname{so}(4)^*$, and $\operatorname{su}(1,1)^*$”, J. Math. Phys., 34 (1993), 4986–5006 | DOI | MR | Zbl
[24] Karasev M. V., Kozlov M. B., “Floke-resheniya gamiltonianov nad $\operatorname{su}(2)$ s tochki zreniya simplekticheskoi geometrii i kogerentnykh sostoyanii”, Algebra i analiz, 6:5 (1994), 231–251 (to appear)
[25] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl
[26] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1972 | MR
[27] Arnold V. I., “Mody i kvazimody”, Funkts. analiz i ego pril., 6:2 (1972), 12–20 | MR
[28] Rawnsley J., “Coherent states and Kähler manifolds”, Quart. J. Math., 28 (1977), 403–415 | DOI | MR | Zbl
[29] Khart N., Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR
[30] Odjiewicz A., “On reproducing kernels and quantization of states”, Commun. Math. Phys., 114 (1988), 577–597 | DOI | MR
[31] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces”, Amer. J. Math., 80 (1958), 459–538 ; 81 (1959), 315–382 | DOI | MR | DOI | MR
[32] Czyz J., On some approach to geometric quantization, Lect. Notes Math., 676, 1978 | MR | Zbl
[33] Hess H., “On a geometric quantization scheme generalizing those of Kostant–Souriau and Czyz”, Lect. Notes Phys., 139, 1981, 1–35 | DOI | MR