Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1994_28_1_a5, author = {A. V. Stoyanovskii and B. L. Feigin}, title = {Functional {Models} for {Representations} of {Current} {Algebras} and {Semi-Infinite} {Schubert} {Cells}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {68--90}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a5/} }
TY - JOUR AU - A. V. Stoyanovskii AU - B. L. Feigin TI - Functional Models for Representations of Current Algebras and Semi-Infinite Schubert Cells JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1994 SP - 68 EP - 90 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a5/ LA - ru ID - FAA_1994_28_1_a5 ER -
%0 Journal Article %A A. V. Stoyanovskii %A B. L. Feigin %T Functional Models for Representations of Current Algebras and Semi-Infinite Schubert Cells %J Funkcionalʹnyj analiz i ego priloženiâ %D 1994 %P 68-90 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a5/ %G ru %F FAA_1994_28_1_a5
A. V. Stoyanovskii; B. L. Feigin. Functional Models for Representations of Current Algebras and Semi-Infinite Schubert Cells. Funkcionalʹnyj analiz i ego priloženiâ, Tome 28 (1994) no. 1, pp. 68-90. http://geodesic.mathdoc.fr/item/FAA_1994_28_1_a5/
[1] Schechtman V., Varchenko A., “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl
[2] Beilinson A. A., Ginzburg V. A., “Infinitesimal structure of moduli spaces of $G$-bundles”, Duke Math. J., 4 (1992), 63–74 | MR | Zbl
[3] Lepowsky J., Primc M., “Structure of the standard modules for the affine Lie algebra $A_1^{(1)}$”, Contemporary Mathematics, 46 (1985), AMS, Providence | DOI | MR | Zbl
[4] Kac V. G., Infinite dimensional Lie algebras, Birkhäuser, Boston, 1983 | MR | Zbl
[5] Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR
[6] Kashiwara M., “The flag manifold of Kac–Moody Lie algebra”, Algebraic Analysis, Geometry, and Number Theory, ed. J.-I. Igusa, Johns Hopkins Univ. Press, Baltimore, MD, 1989, 161–190 | MR
[7] Feigin B. L., Frenkel E. V., “Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities”, I. M. Gelfand fand Seminar, Adv. in Soviet Math., 16, Amer. Math. Soc., Providence, RI, 1993, 139–148 | MR | Zbl
[8] Feigin B. L., Frenkel E. V., “Affine Kac–Moody algebras and semi-infinite flag manifolds”, Commun. Math. Phys., 128 (1990), 161–189 | DOI | MR | Zbl
[9] Drinfeld V. G., Novaya realizatsiya yangianov i kvantovykh affinnykh algebr, FTINT, preprint No 36, Kharkov, 1986 | MR
[10] Feigin B. L., Stoyanovsky A. V., Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, Preprint, RIMS-942, Kyoto, September, 1993 | MR
[11] Kuniba A., Nakanishi T., Suzuki J., Characters in conformal field theories from thermodynamic Bethe Ansatz, HUTP-92/A069 preprint, December, 1992 | MR
[12] Terhoeven M., Lift of dilogarithm to partition identities, Preprint, Bonn, 1992 | MR
[13] Kedem R., Klassen T. R., McCoy B. M., Melzer E., Fermionic quasi-particle representations for characters of $G_1^{(1)}\times G_1^{(1)}/G_2^{(1)}$, ITP preprint, 1992 | MR
[14] Dasmahapatra S., Kedem R., Klassen T. R., McCoy B. M., Melzer E., Quasi-particles, conformal field theory, and $q$-series, Preprint ITP-SB-93-12, RU-93-07 | MR
[15] Mehta V. B., Ramanathan A., “Frobenius splitting and cohomology vanishing for Schubert variety”, Ann. Math., 122 (1985), 27–40 | DOI | MR | Zbl
[16] Andersen H. H., “Schubert varieties and Demazure character formula”, Invent. Math., 79 (1985), 611–618 | DOI | MR | Zbl
[17] Endryus G., Teoriya razbienii, Nauka, M., 1982 | MR
[18] Grothendieck A. et al., “Le groupe de Brauer. II: Théorie cohomologique”, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 67–87 | MR
[19] Kumar S., “Demazure character formula in arbitrary Kac–Moody setting”, Invent. Math., 89 (1987), 395–423 | DOI | MR | Zbl
[20] Lakshmibai V., Seshadri C. S., “Thèorie monomiale standard pour $\widehat{\frak{sl}}_2$”, C. R. Acad. Sci. Paris Ser. I, 305 (1987), 183–185 | MR | Zbl