Analytic Expression for the Dimension of the Space of Conformal Blocks in the Wess--Zumino--Novikov--Witten Model with Gauge Group $SU(2)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 4, pp. 32-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_4_a4,
     author = {S. A. Piunikhin},
     title = {Analytic {Expression} for the {Dimension} of the {Space} of {Conformal} {Blocks} in the {Wess--Zumino--Novikov--Witten} {Model} with {Gauge} {Group} $SU(2)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/}
}
TY  - JOUR
AU  - S. A. Piunikhin
TI  - Analytic Expression for the Dimension of the Space of Conformal Blocks in the Wess--Zumino--Novikov--Witten Model with Gauge Group $SU(2)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 32
EP  - 39
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/
LA  - ru
ID  - FAA_1993_27_4_a4
ER  - 
%0 Journal Article
%A S. A. Piunikhin
%T Analytic Expression for the Dimension of the Space of Conformal Blocks in the Wess--Zumino--Novikov--Witten Model with Gauge Group $SU(2)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 32-39
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/
%G ru
%F FAA_1993_27_4_a4
S. A. Piunikhin. Analytic Expression for the Dimension of the Space of Conformal Blocks in the Wess--Zumino--Novikov--Witten Model with Gauge Group $SU(2)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 4, pp. 32-39. http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/

[1] Verlinde E., “Fusion rules and modular transformations in $2D$ conformal field theory”, Nuclear Phys. B, 300 (1988), 360–376 | DOI | MR

[2] Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 | DOI | MR | Zbl

[3] Dijkgraaf R., Verlinde E., “Modular invariance and fusion algebra”, Nuclear Phys. B, 5 (1988), 87–97, Proc. Suppl. | DOI | MR

[4] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | DOI | MR | Zbl

[5] Witten E., “Non-abelian bosonization in two dimensions”, Comm. Math. Phys., 121:3 (1984), 455 | DOI | MR

[6] Witten E., “Quantum field theory and Jones polynomial”, Comm. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[7] Reshetikhin N. Yu., Quantized universal enveloping algebras, the Yang–Baxter equation and invariants of links, I, Preprint LOMI, E-4-87 | MR

[8] Reshetikhin N. Yu., Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, II, Preprint LOMI, E-4-87 | MR

[9] Kirillov A. N. and Reshetikhin N. Yu., “Representations of algebra $U_q(Sl(2,C))$, $q$-orthogonal polynomials and invariants of links”, Infinite-dimensional Lie algebras and groups, World Scientific, 1988, 285–342 | MR

[10] Jones V. F. R., “A polynomial invariant for links via von Neumann algebras”, Bull. Amer. Math. Soc., 12 (1985), 103–110 | DOI | MR

[11] Moore G., Seiberg N., “Polynomial equations for rational conformal field theories”, Phys. Lett. B, 212 (1988), 451. | DOI | MR

[12] Moore G., Seiberg N., “Naturally in conformal field theory”, Nuclear Phys. B, 313 (1989), 16 | DOI | MR

[13] Moore G., Seiberg N., “Classical and quantum conformal field theory”, Comm. Math. Phys., 123 (1989), 177–254 | DOI | MR | Zbl

[14] Delin P., Miln Dzh., Kategorii Tanaki. Khodzhevy tsikly i motivy, Mir, M., 1985

[15] Mac Lane S., Categories for working mathematician, Springer, NY, 1971 | MR

[16] Friedan D., Shenker S., “The analytic geometry of two-dimensional conformal field theory”, Nuclear Phys. B, 281 (1987), 509–545 | DOI | MR

[17] Szenes A., Hilbert polynomials of moduli spaces of rank $2$ vector bundles, I, Preprint, Harvard | MR

[18] Bertram A., Szenes A., Hilbert polynomials of moduli spaces of rank $2$ vector bundles, II, Preprint, Harvard | MR

[19] Thaddeus M., Conformal field theory and the cohomology of the moduli space of stable bundles, Preprint, Oxford | MR

[20] Zagier D., Letter to R. Bott, 1991

[21] Kac V. G., Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[22] Kac V. G., Peterson D., “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. in Math., 53 (1984), 125–264 | DOI | MR | Zbl

[23] Gepner D., Witten E., “String theory on Group manifolds”, Nuclear Phys. B, 278 (1986), 493–549 | DOI | MR

[24] Kac V. G., Wakimoto M., “Modular and conformal invariance constraints in representation theory of affine algebras”, Adv. Math., 40:1 (1988), 156–236 | DOI | MR

[25] Tsuchia A., Kanie Y., “Vertex operators in conformal field theory on $P^1$ and monodromy representations of braid group”, Adv. Stud. Pure Math., 16 (1988), 297–372 | DOI | MR

[26] Alvarez-Gaume L., Sierra G., Gomez C., “Duality and quantum groups”, Nuclear Phys. B, 330 (1990), 347–398 | DOI | MR | Zbl

[27] Alvarez-Gaume L., Sierra G., Gomez C., “Topics in conformal field theory”, Physics and Mathematics of String, Memorial volume for Vadim Knizhnik, World Scientific, 1990, 16–184 | DOI | MR

[28] Rosso M., “Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra”, Comm. Math. Phys., 117 (1988), 581–593 | DOI | MR | Zbl

[29] Keller G., “Fusion Rules of $U_q(Sl(2,C))$, $q^m=1$”, Lett. Math. Phys., 21 (1991), 273–286 | DOI | MR | Zbl

[30] Concini G. De. Kac V. G., “Representation of quantum group at roots of $1$”, Operator algebras, unitary representations, Enveloping algebras and invariant theory, Progress in Math., 92, Birkhauser, Berlin, 1990, 473–506 | MR

[31] Lusztig G., “Quantum groups at roots of $1$”, Geom. Dedicata, 35:1–3 (1990), 89–114 | MR | Zbl