Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1993_27_4_a4, author = {S. A. Piunikhin}, title = {Analytic {Expression} for the {Dimension} of the {Space} of {Conformal} {Blocks} in the {Wess--Zumino--Novikov--Witten} {Model} with {Gauge} {Group} $SU(2)$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {32--39}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/} }
TY - JOUR AU - S. A. Piunikhin TI - Analytic Expression for the Dimension of the Space of Conformal Blocks in the Wess--Zumino--Novikov--Witten Model with Gauge Group $SU(2)$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1993 SP - 32 EP - 39 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/ LA - ru ID - FAA_1993_27_4_a4 ER -
%0 Journal Article %A S. A. Piunikhin %T Analytic Expression for the Dimension of the Space of Conformal Blocks in the Wess--Zumino--Novikov--Witten Model with Gauge Group $SU(2)$ %J Funkcionalʹnyj analiz i ego priloženiâ %D 1993 %P 32-39 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/ %G ru %F FAA_1993_27_4_a4
S. A. Piunikhin. Analytic Expression for the Dimension of the Space of Conformal Blocks in the Wess--Zumino--Novikov--Witten Model with Gauge Group $SU(2)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 4, pp. 32-39. http://geodesic.mathdoc.fr/item/FAA_1993_27_4_a4/
[1] Verlinde E., “Fusion rules and modular transformations in $2D$ conformal field theory”, Nuclear Phys. B, 300 (1988), 360–376 | DOI | MR
[2] Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 | DOI | MR | Zbl
[3] Dijkgraaf R., Verlinde E., “Modular invariance and fusion algebra”, Nuclear Phys. B, 5 (1988), 87–97, Proc. Suppl. | DOI | MR
[4] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | DOI | MR | Zbl
[5] Witten E., “Non-abelian bosonization in two dimensions”, Comm. Math. Phys., 121:3 (1984), 455 | DOI | MR
[6] Witten E., “Quantum field theory and Jones polynomial”, Comm. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl
[7] Reshetikhin N. Yu., Quantized universal enveloping algebras, the Yang–Baxter equation and invariants of links, I, Preprint LOMI, E-4-87 | MR
[8] Reshetikhin N. Yu., Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links, II, Preprint LOMI, E-4-87 | MR
[9] Kirillov A. N. and Reshetikhin N. Yu., “Representations of algebra $U_q(Sl(2,C))$, $q$-orthogonal polynomials and invariants of links”, Infinite-dimensional Lie algebras and groups, World Scientific, 1988, 285–342 | MR
[10] Jones V. F. R., “A polynomial invariant for links via von Neumann algebras”, Bull. Amer. Math. Soc., 12 (1985), 103–110 | DOI | MR
[11] Moore G., Seiberg N., “Polynomial equations for rational conformal field theories”, Phys. Lett. B, 212 (1988), 451. | DOI | MR
[12] Moore G., Seiberg N., “Naturally in conformal field theory”, Nuclear Phys. B, 313 (1989), 16 | DOI | MR
[13] Moore G., Seiberg N., “Classical and quantum conformal field theory”, Comm. Math. Phys., 123 (1989), 177–254 | DOI | MR | Zbl
[14] Delin P., Miln Dzh., Kategorii Tanaki. Khodzhevy tsikly i motivy, Mir, M., 1985
[15] Mac Lane S., Categories for working mathematician, Springer, NY, 1971 | MR
[16] Friedan D., Shenker S., “The analytic geometry of two-dimensional conformal field theory”, Nuclear Phys. B, 281 (1987), 509–545 | DOI | MR
[17] Szenes A., Hilbert polynomials of moduli spaces of rank $2$ vector bundles, I, Preprint, Harvard | MR
[18] Bertram A., Szenes A., Hilbert polynomials of moduli spaces of rank $2$ vector bundles, II, Preprint, Harvard | MR
[19] Thaddeus M., Conformal field theory and the cohomology of the moduli space of stable bundles, Preprint, Oxford | MR
[20] Zagier D., Letter to R. Bott, 1991
[21] Kac V. G., Infinite-dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl
[22] Kac V. G., Peterson D., “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. in Math., 53 (1984), 125–264 | DOI | MR | Zbl
[23] Gepner D., Witten E., “String theory on Group manifolds”, Nuclear Phys. B, 278 (1986), 493–549 | DOI | MR
[24] Kac V. G., Wakimoto M., “Modular and conformal invariance constraints in representation theory of affine algebras”, Adv. Math., 40:1 (1988), 156–236 | DOI | MR
[25] Tsuchia A., Kanie Y., “Vertex operators in conformal field theory on $P^1$ and monodromy representations of braid group”, Adv. Stud. Pure Math., 16 (1988), 297–372 | DOI | MR
[26] Alvarez-Gaume L., Sierra G., Gomez C., “Duality and quantum groups”, Nuclear Phys. B, 330 (1990), 347–398 | DOI | MR | Zbl
[27] Alvarez-Gaume L., Sierra G., Gomez C., “Topics in conformal field theory”, Physics and Mathematics of String, Memorial volume for Vadim Knizhnik, World Scientific, 1990, 16–184 | DOI | MR
[28] Rosso M., “Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra”, Comm. Math. Phys., 117 (1988), 581–593 | DOI | MR | Zbl
[29] Keller G., “Fusion Rules of $U_q(Sl(2,C))$, $q^m=1$”, Lett. Math. Phys., 21 (1991), 273–286 | DOI | MR | Zbl
[30] Concini G. De. Kac V. G., “Representation of quantum group at roots of $1$”, Operator algebras, unitary representations, Enveloping algebras and invariant theory, Progress in Math., 92, Birkhauser, Berlin, 1990, 473–506 | MR
[31] Lusztig G., “Quantum groups at roots of $1$”, Geom. Dedicata, 35:1–3 (1990), 89–114 | MR | Zbl