On Efimov's Effect in a System of Three Identical Quantum Particles
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 3, pp. 15-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_3_a2,
     author = {S. N. Lakaev},
     title = {On {Efimov's} {Effect} in a {System} of {Three} {Identical} {Quantum} {Particles}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {15--28},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a2/}
}
TY  - JOUR
AU  - S. N. Lakaev
TI  - On Efimov's Effect in a System of Three Identical Quantum Particles
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 15
EP  - 28
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a2/
LA  - ru
ID  - FAA_1993_27_3_a2
ER  - 
%0 Journal Article
%A S. N. Lakaev
%T On Efimov's Effect in a System of Three Identical Quantum Particles
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 15-28
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a2/
%G ru
%F FAA_1993_27_3_a2
S. N. Lakaev. On Efimov's Effect in a System of Three Identical Quantum Particles. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 3, pp. 15-28. http://geodesic.mathdoc.fr/item/FAA_1993_27_3_a2/

[1] Efimov V. N., “Svyazannye sostoyaniya trekh rezonansno vzaimodeistvuyuschikh chastits”, Yadernaya fizika, 12:5 (1970), 1080–1091

[2] Amado R. D., Noble J. V., “Efimov's effect: a new pathology of three-particle systems, I”, Phys. Lett. B, 35:1 (1971), 25–27 | DOI | MR

[3] Amado R. D., Noble J. V., “Efimov's effect: a new pathology of three-patticle systems, II”, Phys. Rev. D, 5:8, 1992–2002 | DOI

[4] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[5] Yafaev D. R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shrëdingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | Zbl

[6] Ovchinnikov Yu. N., Sigal I. M., “Number of bound states of three-body systems and Efimov's effect”, Ann. Physics, 123 (1989), 274–295 | DOI | MR

[7] Tamura H., “The Efimov effect of three-body Schrödinger operators”, J. Funct. Anal., 95 (1991), 433–459 | DOI | MR | Zbl

[8] Mattis D. C., “The few-body problem on lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[9] Malyshev V. A., Minlos R. A., “Klasternye operatory”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 63–80 | MR | Zbl

[10] Mogilner A. I., “The problem of a few quasi-particles in solid state physics”, Applications of self-adjoint extensions in quantum physics, Lecture Notes in Phys., 324, eds. P. Exner, P. Seba, Springer-Verlag, Berlin, 1988, 160–173 | DOI | MR

[11] Lakaev S. N., “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, Teoret. i matem. fizika, 89:1 (1991), 94–104 | MR

[12] Vugalter S. A., Zhislin G. M., “The symmetry and Efimov's effect in systems of three quantum particles”, Comm. Math. Phys., 87 (1982), 89–103 | DOI | MR

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[14] Lakaev S. N., “Svyazannye sostoyaniya i rezonansy $N$-chastichnogo diskretnogo operatora Shrëdingera”, Teor. i matem. fizika, 91:1 (1992), 51–65 | MR