Harmonic Analysis and the Global Exponential Map for Compact Lie Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1993_27_1_a2,
     author = {A. H. Dooley and N. J. Wildberger},
     title = {Harmonic {Analysis} and the {Global} {Exponential} {Map} for {Compact} {Lie} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {25--32},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a2/}
}
TY  - JOUR
AU  - A. H. Dooley
AU  - N. J. Wildberger
TI  - Harmonic Analysis and the Global Exponential Map for Compact Lie Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1993
SP  - 25
EP  - 32
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a2/
LA  - ru
ID  - FAA_1993_27_1_a2
ER  - 
%0 Journal Article
%A A. H. Dooley
%A N. J. Wildberger
%T Harmonic Analysis and the Global Exponential Map for Compact Lie Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1993
%P 25-32
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a2/
%G ru
%F FAA_1993_27_1_a2
A. H. Dooley; N. J. Wildberger. Harmonic Analysis and the Global Exponential Map for Compact Lie Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 25-32. http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a2/

[1] Berezin F. A., Gelfand I. M., “Neskolko zamechanii k teorii sfericheskikh funktsii na simmetricheskikh rimanovykh mnogoobraziyakh”, Trudy MMO, 5, 1956, 311–351. | MR

[2] Dooley A. H., Repka J., Wildberger N. J., “Sums of adjoint orbits” (to appear)

[3] Duflo M., “Opérateurs différentiels bi-invariants sur un groupe de Lie”, Ann. Sci. Ecole Norm. Sup., 10 (1977), 265–288 | DOI | MR | Zbl

[4] Frenkel I., Chastnoe soobschenie

[5] Kashiwara M., Vergne M., “The Campbell–Hausdorff formula and invariant hyperfuntions”, Invent. Math., 47 (1978), 249–272 | DOI | MR | Zbl

[6] Kirillov A. A., “Kharaktery unitarnykh predstavlenii grupp Li. Reduktsionnye teoremy”, Funkts. analiz i pril., 3:1 (1969), 36–47 | MR | Zbl

[7] Ragozin D. L., “Central measures on compact semi-simple Lie groups”, J. Functional Anal., 10 (1972), 212–229 | DOI | MR | Zbl

[8] Thompson R., “Author vs referee: A case history for middle level mathematicians”, Amer. Math. Monthly, 90:10 (1983), 661–668 | DOI | MR

[9] Varadarajan V. S., Harmonic analysis on real reductive groups, LNM, 576, Springer-Verlag, Berlin, 1977 | MR | Zbl

[10] Vergne M., “A Plancherel formula without group representations”, Operator Algebras and Group Representations, II, Neptune, 1980, 217–226 | MR

[11] Wildberger N. J., “On a relationship between agjoint orbits and conjugacy classes of a Lie group”, Canad. Math. Bull., 33:3 (1990), 297–304 | DOI | MR | Zbl

[12] Wildberger N. J., “Hypergroups and harmonic analysis”, Proc. Centre Math. Anal., 29 (1992), 238–253 | MR