Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1993_27_1_a2, author = {A. H. Dooley and N. J. Wildberger}, title = {Harmonic {Analysis} and the {Global} {Exponential} {Map} for {Compact} {Lie} {Groups}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {25--32}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a2/} }
TY - JOUR AU - A. H. Dooley AU - N. J. Wildberger TI - Harmonic Analysis and the Global Exponential Map for Compact Lie Groups JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1993 SP - 25 EP - 32 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a2/ LA - ru ID - FAA_1993_27_1_a2 ER -
A. H. Dooley; N. J. Wildberger. Harmonic Analysis and the Global Exponential Map for Compact Lie Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 25-32. http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a2/
[1] Berezin F. A., Gelfand I. M., “Neskolko zamechanii k teorii sfericheskikh funktsii na simmetricheskikh rimanovykh mnogoobraziyakh”, Trudy MMO, 5, 1956, 311–351. | MR
[2] Dooley A. H., Repka J., Wildberger N. J., “Sums of adjoint orbits” (to appear)
[3] Duflo M., “Opérateurs différentiels bi-invariants sur un groupe de Lie”, Ann. Sci. Ecole Norm. Sup., 10 (1977), 265–288 | DOI | MR | Zbl
[4] Frenkel I., Chastnoe soobschenie
[5] Kashiwara M., Vergne M., “The Campbell–Hausdorff formula and invariant hyperfuntions”, Invent. Math., 47 (1978), 249–272 | DOI | MR | Zbl
[6] Kirillov A. A., “Kharaktery unitarnykh predstavlenii grupp Li. Reduktsionnye teoremy”, Funkts. analiz i pril., 3:1 (1969), 36–47 | MR | Zbl
[7] Ragozin D. L., “Central measures on compact semi-simple Lie groups”, J. Functional Anal., 10 (1972), 212–229 | DOI | MR | Zbl
[8] Thompson R., “Author vs referee: A case history for middle level mathematicians”, Amer. Math. Monthly, 90:10 (1983), 661–668 | DOI | MR
[9] Varadarajan V. S., Harmonic analysis on real reductive groups, LNM, 576, Springer-Verlag, Berlin, 1977 | MR | Zbl
[10] Vergne M., “A Plancherel formula without group representations”, Operator Algebras and Group Representations, II, Neptune, 1980, 217–226 | MR
[11] Wildberger N. J., “On a relationship between agjoint orbits and conjugacy classes of a Lie group”, Canad. Math. Bull., 33:3 (1990), 297–304 | DOI | MR | Zbl
[12] Wildberger N. J., “Hypergroups and harmonic analysis”, Proc. Centre Math. Anal., 29 (1992), 238–253 | MR