Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1993_27_1_a1, author = {M. I. Golenishcheva-Kutuzova and D. R. Lebedev}, title = {$\mathbb{Z}${-Graded} {Trigonometric} {Lie} {Subalgebras} in $\widehat{A}_\infty$, $\widehat{B}_\infty$, $\widehat{C}_\infty$, and $\widehat{D}_\infty$ and {Their} {Vertex} {Operator} {Representations}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {12--24}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {1993}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a1/} }
TY - JOUR AU - M. I. Golenishcheva-Kutuzova AU - D. R. Lebedev TI - $\mathbb{Z}$-Graded Trigonometric Lie Subalgebras in $\widehat{A}_\infty$, $\widehat{B}_\infty$, $\widehat{C}_\infty$, and $\widehat{D}_\infty$ and Their Vertex Operator Representations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1993 SP - 12 EP - 24 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a1/ LA - ru ID - FAA_1993_27_1_a1 ER -
%0 Journal Article %A M. I. Golenishcheva-Kutuzova %A D. R. Lebedev %T $\mathbb{Z}$-Graded Trigonometric Lie Subalgebras in $\widehat{A}_\infty$, $\widehat{B}_\infty$, $\widehat{C}_\infty$, and $\widehat{D}_\infty$ and Their Vertex Operator Representations %J Funkcionalʹnyj analiz i ego priloženiâ %D 1993 %P 12-24 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a1/ %G ru %F FAA_1993_27_1_a1
M. I. Golenishcheva-Kutuzova; D. R. Lebedev. $\mathbb{Z}$-Graded Trigonometric Lie Subalgebras in $\widehat{A}_\infty$, $\widehat{B}_\infty$, $\widehat{C}_\infty$, and $\widehat{D}_\infty$ and Their Vertex Operator Representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 27 (1993) no. 1, pp. 12-24. http://geodesic.mathdoc.fr/item/FAA_1993_27_1_a1/
[1] Fairlie D., Fletcher P., Zachos C., “Trigonometric structure constants for new infinite-dimensional algebras”, Phys. Lett. B, 218:2 (1989), 203–206 | DOI | MR | Zbl
[2] Saveliev M. V., Vershik A. M., “Continual analogs of contragredient Lie algebras”, Comm. Math. Phys., 126:2, 367–378 | DOI | MR | Zbl
[3] Saveliev M. V., Vershik A. M., “New examples of continuum graded Lie algebras”, Phys. Lett. A, 143 (1990), 121–128 | DOI | MR
[4] Lebedev D., Orlov A., Pakuliak S., Zabrodin A., “Nonlocal integrable equations of the Toda hierarchy”, Phys. Lett. A, 160 (1991), 166–172 | DOI | MR
[5] Lebedev D., Pakuliak S., “Zakharov–Shabat technique with quantized spectral parameter in the theory of integrable models”, Phys. Lett. A, 160 (1991), 173–178 | DOI | MR
[6] Hoppe J., Olshanetsky M., Theisen S., Dynamical system on trigonometrical algebras, Preprint KA–THEP–10/91
[7] Floratos E. G., “Spin wedge and vertex operators representations of trigonometric algebras and their central extensions”, Phys. Lett. B, 232 (1989), 467–474 | DOI | MR
[8] Golenischeva-Kutuzova M., Lebedev D., “Predstavlenie vershinnymi operatorami sinus-algebry Veilya–Moiala–Ferli”, Pisma v ZhETF, 52:10 (1990), 1164–1167
[9] Kac V., Infinite-dimensional Lie algebras, Cambrige Univ. Press, 1991 | MR
[10] Kac V., Kazhdan D., Lepowsky J., Wilson R., “Realization of the basic representation of the Euclidean Lie algebras”, Adv. in Math., 42 (1981), 83–112 | DOI | MR | Zbl
[11] Connes A., Rieffel M., “Yang–Mills for non-commutative two tori”, Contemp. Math., 62, 1978, 237–266 | DOI | MR
[12] Connes A., “Non-commutative differential geometry”, Publ. Math., 1985, no. 62, 41–144 | DOI | MR | Zbl
[13] Frenkel I. V., Jing N., “Vertex representations of quantum affine algebras”, Proc. Natl. Acad. Sci. USA, 85 (1988), 9373–9377 | DOI | MR | Zbl
[14] Golenischeva-Kutuzova M., Lebedev D., “Trigonometricheskie podalgebry Li v $X_\infty=A_\infty$ (sootv. $B_\infty$, $C_\infty$, $D_\infty$) i ikh predstavleniya vershinnymi operatorami”, Pisma v ZhETF, 52:8 (1991), 473–476
[15] Hoppe J., “$\operatorname{Diff}_AT^2$ and the curvature of some infinite dimensional manifolds”, Phys. Lett. B, 215 (1988), 706–710 | DOI | MR
[16] Vershik A. M., “Continuum roots system Lie algebras” (to appear)