Introduction from the book ``Vertex operator algebras and the Monster''
Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 36-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1991_25_4_a3,
     author = {I. B. Frenkel' and I. Lepovski and A. Merman},
     title = {Introduction from the book {``Vertex} operator algebras and the {Monster''}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--52},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a3/}
}
TY  - JOUR
AU  - I. B. Frenkel'
AU  - I. Lepovski
AU  - A. Merman
TI  - Introduction from the book ``Vertex operator algebras and the Monster''
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1991
SP  - 36
EP  - 52
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a3/
LA  - ru
ID  - FAA_1991_25_4_a3
ER  - 
%0 Journal Article
%A I. B. Frenkel'
%A I. Lepovski
%A A. Merman
%T Introduction from the book ``Vertex operator algebras and the Monster''
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1991
%P 36-52
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a3/
%G ru
%F FAA_1991_25_4_a3
I. B. Frenkel'; I. Lepovski; A. Merman. Introduction from the book ``Vertex operator algebras and the Monster''. Funkcionalʹnyj analiz i ego priloženiâ, Tome 25 (1991) no. 4, pp. 36-52. http://geodesic.mathdoc.fr/item/FAA_1991_25_4_a3/

[1] Jacobi S.G.J., “Fundamenta Nova Theoriae Functionum Ellipticarum”, Gesammelte Werke 1, Chelsea, New York, 1881, 49–239

[2] Dedekind R., “Schreiben an Herrn Borchardt uber Theorie der elliptischen Modulfunktionen”, J. Reine Angew. Math., 83 (1877), 265–292 | MR

[3] Klein F., “Über die Transformation der elliptischen Funktionen und die Auflosung der Gleichungen funften Grades”, Gesammelte math. Abhandlungen 3, Springer, 1923, 13–75 | DOI | MR

[4] Klein F., “Zur Theorie der elliptischen Modulfunktionen”, Gesammelte math. Abhandlungen 3, Springer, 1923, 169–178 | DOI | MR

[5] Fuchs L., “Über eine Klasse von Funktionen mehrerer Variabeln welche durch Umkehrung der Integrale von Losungen der linearen Differentialgleichungen mit Rationalen Coefficienten entstehen”, J. Reine Angew. Math., 89 (1880), 151–169 | DOI | MR

[6] Poincare A., “Theorie des groupes Fuchsiens”, ØE uvres 2, Gauthier–Villars, Paris, 1916, 108–168 | MR

[7] Lehner J., Discontinuous groups and automorphic functions, AMS, Providence, 1964 | MR | Zbl

[8] Fricke R., Die Elliptische Funktionen und ihre Anwendungen, Teubner, Leipzig, 1922 | Zbl

[9] Atkin A.O.L., Lehner J., “Hecke operators on $\Gamma_0(m)$”, Math. Ann., 185 (1970), 134–160 | DOI | MR | Zbl

[10] Ogg A.P., “Automorphismes des courbes modulaires”, Sem. Delange–Pisot–Poitou, 16 annee (1974-75), no. 7 | MR

[11] Birch B.J., Kuyk W., “Modular functions of one variable. 4”, Lect. Notes Math., 476, Springer, 1975 | DOI | MR | Zbl

[12] Mathieu E., “Memoire sur I'etude des fonctions de plusieres quantities sur la maniere de les formes et sur les substitutions qui les laissent invariables”, Crelle J., 6 (1861), 241–323

[13] Burnside W., Theory of groups of finite order, Cambridge, 1911 | MR

[14] Brauer R., “On the structure of groups of finite order”, Proc. Int. Congr. Math., 1, Noordhoff, Groningen, 1954, 209–217 | MR

[15] Chevalley C., “Sur certaine groupes simples”, Tohoku Math. J., 7 (1955), 14–66 | DOI | MR | Zbl

[16] Feit W., Thompson J., “Solvability of groups of odd order”, Pacif. J. Math., 13 (1963), 775–1029 | DOI | MR | Zbl

[17] Gorenstein D., Finite simple groups: an introduction to their classification, Plenum Press, New York, 1982 | MR | Zbl

[18] Conway J.H., “A group of order 8, 315, 553, 613, 086, 720, 000”, Bull. London Math. Soc., 1 (1969), 79–88 | DOI | MR | Zbl

[19] Leech J., “Notes on sphere packings”, Can. J. Math., 19 (1967), 251–267 | DOI | MR | Zbl

[20] Fischer V., Livingstone D., Thorne M.P., The characters of the “Monster” simple group, Birmingham, 1978

[21] Griess R.L.Jr., “The Friendly Giant”, Invent. Math., 69 (1982), 1–102 | DOI | MR | Zbl

[22] Tits J., “Resume de cours”, Ann. Coll. France, 1982–1983, 89–102 | MR

[23] Tits J., “Le Monstre”, Sem. Bourbaki, 620 (1983/84) | MR

[24] Tits J., “On R. Griess “Friendly Giant””, Invent. Math., 78 (1984), 491–499 | DOI | MR | Zbl

[25] Conway J.H., “A simple construction for the Fischer–Griess monster group”, Invent. Math., 79 (1985), 513–540 | DOI | MR | Zbl

[26] Conway J.H., “The Monster group and its 196884-dimensional space”, Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, Springer, 1988, 555–567 | MR

[27] Thompson J.G., “Some numerology between the Fisher–Griess Monster and elliptic modular functions”, Bull. London Math. Soc., 11 (1979), 352–353 | DOI | MR | Zbl

[28] Thompson J.G., “Finite groups and modular functions”, Bull. London Math. Soc., 11 (1979), 347–351 | DOI | MR | Zbl

[29] Conway J.H., Norton S.P., “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl

[30] Conway J., Monsters and moonshine, Math. Intelligencer | MR

[31] Fong P., “Characters arising in the Monster-modular connection”, Proc. Symp. Pure Appl. Math. AMS, 37 (1980), 557–559 | DOI | MR | Zbl

[32] Smiths S., “On the Head characters of the Monster simple group”, Contemp. Math., 45 (1985), 303–313 | DOI | MR

[33] Griess R.L.Jr., Meierfrankenfeld U., Segev Y., A uniqueness proof for the Monster

[34] Killing W., “Die Zusammensetzung der stetigen endlichen Transformationgruppen II”, Math. Ann., 33 (1889), 1–48 | DOI | MR

[35] Cartan E., “Sur la structure des groupes de transformations finis et continus”, ØE uvres Completes 1:1, Gauthier–Villars, Paris, 1952, 137–253 | MR

[36] Cartan E., “Les groupes projectifs qui ne laissent invariante aucune multiplicite plane”, ØE uvres Completes 1:1, Gauthier–Villars, Paris, 1952, 335–398 | MR

[37] Weyl H., “Theorie der Darstellung kontinuierlicherhalLeinfacher Gruppen durch lineare Transformationen”, Gesammelte Abhandlungen II, Springer, 1968, 543–647 | MR

[38] Kats V.G., “Prostye neprivodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR. Ser. matem., 32 (1968), 1323–1367 | Zbl

[39] Kantor I.L., “Graduirovannye algebry Li”, Trudy seminara po vektornomu i tenzornomu analizu, 15, 1970, 227–266 | MR | Zbl

[40] Moody R.V., “A new class of Lie algebras”, J. Algebra, 10 (1968), 211–230 | DOI | MR

[41] Macdonald I.G., “Affine root systems and Dedekind's $\eta$-function”, Invent. Math., 15 (1972), 91–143 | DOI | MR | Zbl

[42] Dyson F.J., “Missed opportunities”, Bull. AMS, 78 (1972), 635–652 | DOI | MR | Zbl

[43] Kats V.G., “Beskonechnomernye algebry Li i $\eta$-funktsiya Dedekinda”, Funktsion. analiz i ego pril., 8:1 (1974), 77–78 | MR | Zbl

[44] Lepowsky J., Wilson R.L., “Construction of the affine Lie algebra $A_1^{(1)}$”, Commun. Math. Phys., 62 (1978), 43–53 | DOI | MR | Zbl

[45] Kac V.G., Kazhdan D.A., Lepowsky J., Wilson R.L., “Realization of the basic representations of the Euclidean Lie algebras”, Adv. Math., 42 (1981), 83–112 | DOI | MR | Zbl

[46] Frenkel I.V., Kac V.G., “Basic representations of affine algebras and dual resonance models”, Invent. Math., 62 (1980), 23–66 | DOI | MR | Zbl

[47] Segal G., “Unitary representations of some infinite-dimensional groups”, Commun. Math. Phys., 80 (1981), 301–342 | DOI | MR | Zbl

[48] Steinberg R., Lectures on Chevalley groups, Yale lecture notes, 1968 | MR

[49] Garland H., “The arithmetic theory of loop algebras”, J. Algebra, 53 (1978), 480–551 | DOI | MR | Zbl

[50] Garland H., “The arithmetic theory of loop groups”, Inst. Hautes Etudes Sci. Publ. Math., 52 (1980), 5–136 | DOI | MR | Zbl

[51] Mitzman D., “Integral bases for affine Lie algebras and their universal enveloping algebras”, Contemp. Math., 40 (1985) | DOI | MR | Zbl

[52] Tits J., “Resume de cours”, Ann. Coll. France, 81 (1980), 75–87

[53] Kac V.G., Infinite-dimensional Lie algebras, Cambridge, 1985 | MR | Zbl

[54] Pressley A., Segal G., Loop groups, Oxford, 1986 | MR | Zbl

[55] Feingold A., Lepowsky J., “The Weyl–Kac character formula and power series identities”, Adv. Math., 29 (1978), 271–309 | DOI | MR | Zbl

[56] Kac V.G., “Infinite-dimensional Lie algebras, Dedekind's-function, classical Mobius function and the very strange formula”, Adv. Math., 30 (1978), 85–136 | DOI | MR | Zbl

[57] Lepowsky J., “Euclidean Lie algebras and the modular function $J$”, Symp. Pure Math. AMS, 37 (1980), 567–570 | DOI | MR | Zbl

[58] Kac V.G., “An euclidation of "Infinite-dimensional$\dots$ and the very strange formula", $E_8^{(1)}$ and the cube root of the modular invariant $j$”, Adv. Math., 35 (1980), 264–273 | DOI | MR | Zbl

[59] Garland H., Lectures on loop algebras and the Leech lattice, Yale lect. notes, 1980

[60] Kac V.G., “A remark on the Conway–Norton conjecture about the “Monster” simple group”, Proc. Nat. Acad. Sci. USA, 77 (1980), 5048–5049 | DOI | MR | Zbl

[61] Frenkel I.V., Lepowsky J., Meurman A., “An $E_8$-approach to $F_1$”, Contemp. Math., 45 (1985), 99–120 | DOI | MR | Zbl

[62] Frenkel I.V., Lepowsky J., Meurman A., “A natural representation of the Fischer–Griess Monster and the modular function $J$ as character”, Proc. Nat. Acad. Sci. USA, 81 (1984), 3256–3260 | DOI | MR | Zbl

[63] Frenkel I.V., Lepowsky J., Meurman A., “A moonshine module for the Monster”, Vertex operators in Mathematics and Physics, Springer, 1985, 231–273 | DOI | MR

[64] Frenkel I.V., Lepowsky J., Meurman A., “An introduction to the Monster”, Unified String Theories, Singapore, 1986, 533–546 | MR | Zbl

[65] Borcherds R.E., “Vertex algebras, Kac–Moody algebras and the Monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR

[66] Veneziano G., “Construction of a crossing-symmetric, Regge - behaved amplitude for linearly rising trajectiries”, Nuovo Cim., 57A (1968), 190–197 | DOI

[67] Koba Z., Nielsen H.B., “Manifestly crossing – invariant reparametrization of $n$-meson amplitude”, Nucl. Phys. V, 12 (1969), 517 | DOI

[68] Fubini S,, Veneziano G., “Duality in operator formalism”, Nuovo Cim., 67A (1970), 29 | DOI

[69] Neveu A., Scherk J., “Parameter free regularization of one-loop unitary dual diagram”, Phys. Rev., D1 (1970), 2355

[70] Lovelace S., “Pomeron form factors and dual Regge cuts”, Phys. Lett., 34B (1971), 500 | DOI | MR

[71] Goddard P., Rebbi C., Thorn S.V., “Lorentz covariance and the physical states in dualresonance models”, Nuova Cim., 12A (1972), 425 | DOI | MR

[72] Del Giudice E., Di Vecchia P., Fubini S., “General properties of the dual resonance model”, Ann. Phys., 70 (1972), 378 | DOI

[73] Brower R.S, “Spectrum-generating algebra and no-ghost theorem for the dual model”, Phys. Rev., D6 (1972), 1655–1662

[74] Goddard P., Thorn C.B., “Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model”, Phys. Lett., 40B (1972), 235 | DOI | MR

[75] Fubini S., Veneziano G., “Algebraic treatment of subsidiary conditions in dual resonance models”, Ann. Phys., 63 (1971), 12 | DOI

[76] Corrigan E.F., Fairlie D.B., “Fermion-meson vertices in dual theories”, Nuovo Cim., 11A (1972), 749–773 | DOI

[77] Bardaci K., Halpern M.B., “New dual quark models”, Phys. Rev., D3 (1971), 2493–2506 | MR

[78] Corrigan E.F., Fairlie D.B., “Off-shell states in dual resonance theory”, Nucl. Phys., B91 (1975), 527–545 | DOI

[79] Brower R.C, Goddard P., “Collinear algebra for the dual model”, Nucl. Phys., B40 (1972), 437–444 | DOI

[80] Brower B.C., Goddard P., “Physical states in the dual resonance model”, Proc. Int. School Phys. “E.Fermi” 54, Academic Press, 1973, 98–110 | MR

[81] Halpern M.B., “Quantum “solitons” which are $SU(N)$ formions”, Phys. Rev., D12 (1975), 1684–1699 | MR

[82] Banks T., Horn D., Neuberger H., “Bosonization of the $SU(N)$ Thirring models”, Nucl. Phys., B108 (1976), 119 | DOI

[83] Goddard P., Olive D., “Algebras, lattices and strings”, Vertex operators in Mathematics and Physics, Springer, 1985, 51–96 | DOI | MR

[84] Corrigan E., Hollowood T.J., “Comments on the algebra of straight, twisted and intertwinning vertex operators”, Nucl. Phys., B304 (1988), 77–107 | DOI | MR

[85] Nielsen H.B., “An almost physical interpretation of the integrand of the $n$-point Veneziano model”, Proc. 15 Int. Conf. High Energy, Kiev, 1970

[86] Susskind L., “Dual-symmetric theory of hadrons I”, Nuovo Cim., 69A (1970), 457–495 | DOI | MR

[87] Nambu Y., Lectures on Copenhagen symposium, 1970

[88] Goddard P., Goldstone J., Rebbi C., Thorn S.V., “Quantum dynamics ofa a massless relativistic string”, Nucl. Phys, B56 (1973), 109 | DOI

[89] Hsue C.S., Sakita V., Virasoro M.A., “Formulation of dual theory in terms of functional integration”, Phys. Rev., D2 (1970), 2857

[90] Gervais J.L., Sakita B., “Functional integral approach to dual resonance theory”, Phys. Rev., D4 (1971), 2291 | MR

[91] Mandelstam S., “Dual-resonance models”, Phys. Rep., C13 (1974), 259 | DOI | MR

[92] Dual theory, Reprint Book Series 1, Phys. Rep., 1974

[93] Witten E., “Physics and geometry”, Proc. Int. Congr. Math. (Berkeley 1986), 1, 1987, 267–303 | MR | Zbl

[94] Yoneya T., “Quantum gravity and the zero-slope limit of the generalized Virasoro model”, Nuovo Cim. Lett., 8 (1973), 951–955 | DOI

[95] Scherk J., Schwarz J.H., “Dual models for non-hadrons”, Nucl. Phys., B81 (1974), 118–144 | DOI

[96] Gliozzi F., Olive D., Scherk J., “Supersymmetry, supergravity theories and the dual spinor model”, Nucl. Phys., B122 (1977), 253–290 | DOI

[97] Green M.V., Schwarz J.H., “Supersymmetrical dual string theory”, Nucl. Phys., B181 (1981), 502 | DOI

[98] Polyakov A.M., “Quantum geometry of bosonic strings”, Phys. Lett., 103B (1981), 207–211 | DOI | MR

[99] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys., B241 (1984), 333–380 | DOI | MR