Jacobi equations on minimal homogeneous submanifolds in homogeneous riemannian spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 2, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1990_24_2_a5,
     author = {L\^e H\^ong V\^an},
     title = {Jacobi equations on minimal homogeneous submanifolds in homogeneous riemannian spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a5/}
}
TY  - JOUR
AU  - Lê Hông Vân
TI  - Jacobi equations on minimal homogeneous submanifolds in homogeneous riemannian spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1990
SP  - 50
EP  - 62
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a5/
LA  - ru
ID  - FAA_1990_24_2_a5
ER  - 
%0 Journal Article
%A Lê Hông Vân
%T Jacobi equations on minimal homogeneous submanifolds in homogeneous riemannian spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1990
%P 50-62
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a5/
%G ru
%F FAA_1990_24_2_a5
Lê Hông Vân. Jacobi equations on minimal homogeneous submanifolds in homogeneous riemannian spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 2, pp. 50-62. http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a5/

[1] Alekseevskii D.V., Perelomov A.M., “Invariantnye metriki Kelera–Einshteina na kompaktnykh odnorodnykh prostranstvakh”, Funktsion. analiz i ego pril., 20:3 (1986), 1–16 | MR | Zbl

[2] Aminov Yu.A., “O neustoichivosti minimalnoi poverkhnosti v 4-mernom rimanovom prostranstve polozhitelnoi krivizny”, Mat. sb., 100:3 (1976), 400–419 | MR | Zbl

[3] Vinberg E.B., Onischik A.L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[4] Dao Chong Tkhi, Fomenko A.G., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl

[5] Dynkin E.V., “Maksimalnye podgruppy klassicheskikh grupp”, Trudy MMO, 1, 1952, 39–166 | MR | Zbl

[6] Kirillov A.A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[7] Koboyasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR

[8] Le Khong Van, “Minimalnye poverkhnosti v odnorodnykh prostranstvakh”, Izv. AN SSSR. Ser. mat., 52:2 (1988), 408–423

[9] Le Khong Van, “Minimalnye F-lagranzhevy poverkhnosti v pochti ermitovykh mnogoobraziyakh”, Mat. sb., 180:7 (1989), 924–936 | Zbl

[10] Le Khong Van, “Otnositelnye kalibrovki i problema ustoichivosti minimalnykh poverkhnostei”, Topologicheskie i geometricheskie metody analiza, Izd-vo VGU, Voronezh, 1989, 122–136

[11] Tuzhilin A.A., “Indeksy dvumernykh minimalnykh poverkhnostei”, Novye v globalnom analize, Izd-vo VGU, Voronezh, 1987, 130–176

[12] Tyrin A.V., Geometricheskie svoistva garmonicheskikh otobrazhenii, Dis. ... kand. fiz.-mat. nauk, M., 1986, 141 pp.

[13] Brother J., “StabiHty of minimal orbits”, Trans. AMS, 292, no. 2, 1986, 537–552 | DOI | MR

[14] Lawson H.B., Simons J., “On stable currents and their applications to global problems in real and complex geometry”, Ann. of Math., 98:3 (1973), 427–450 | DOI | MR | Zbl

[15] Ohnita Y., “On stability of minimal submanifolds in compact symmetric spaces”, Composito Math., 64:2 (1987), 157–190 | MR

[16] Simons J., “Minimal varieties in Riemannian manifolds”, Ann. Math., 88:1 (1968), 62–105 | DOI | MR | Zbl

[17] Smith R.T., “The second variation formular for harmonic mappings”, Proc. AMS, 47:1 (1975), 229–236 | DOI | MR | Zbl

[18] Tromba A., “Degree theory on oriented infinite dimensional varienties and the Morse number of minimal surfaces spanning a curve in $\mathbf R^n$”, Trans AMS, 290, no. 1, 1985, 385–413 | MR | Zbl

[19] Wolf J., “The geometry and structure of imsotropy irreducible homogeneous spaces”, Asta Math., 120:1 (1968), 59–148 | DOI | MR | Zbl

[20] Wang M., Ziller W., “On Normal Homogeneous Einstein Manifolds”, Ann. Sci. Ecole Norm. Super., 18:4 (1985. Ser. 4), 563–633 | DOI | MR | Zbl