Normal forms of germs of two-dimensional distributions in $\mathbb{R}^4$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 2, pp. 81-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1990_24_2_a10,
     author = {M. Ya. Zhitomirskii},
     title = {Normal forms of germs of two-dimensional distributions in $\mathbb{R}^4$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--82},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a10/}
}
TY  - JOUR
AU  - M. Ya. Zhitomirskii
TI  - Normal forms of germs of two-dimensional distributions in $\mathbb{R}^4$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1990
SP  - 81
EP  - 82
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a10/
LA  - ru
ID  - FAA_1990_24_2_a10
ER  - 
%0 Journal Article
%A M. Ya. Zhitomirskii
%T Normal forms of germs of two-dimensional distributions in $\mathbb{R}^4$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1990
%P 81-82
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a10/
%G ru
%F FAA_1990_24_2_a10
M. Ya. Zhitomirskii. Normal forms of germs of two-dimensional distributions in $\mathbb{R}^4$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 2, pp. 81-82. http://geodesic.mathdoc.fr/item/FAA_1990_24_2_a10/

[1] Vershik A.M., Gershkovich V.Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki. Sovremennye problemy matem. Fundament. napravleniya, 16, 1987, 5–85 | MR | Zbl

[2] Gardner R.B., Differential Geometric Control Theory, Birkhauser, Boston, 1983 | MR

[3] Vershik A.M., Gershkovich V.Ya., Mat. zametki, 1988, no. 5, 596–603 | MR

[4] Martinet J., Ann. Inst. Fourier, 20:1 (1970), 95–178 | DOI | MR | Zbl

[5] Zhitomirskii M.Ya., UMN, 43:5 (1988), 193–194 | MR | Zbl

[6] Zhitomirskii M.Ya., Funktsion. analiz i ego pril., 23:1 (1989), 70–71 | MR | Zbl