Recursion relations for homogeneous terms of a convergent series of the logarithm of a multiplicative integral on Lie groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 1, pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1990_24_1_a5,
     author = {A. T. Fomenko and R. V. Chakon},
     title = {Recursion relations for homogeneous terms of a convergent series of the logarithm of a multiplicative integral on {Lie} groups},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1990_24_1_a5/}
}
TY  - JOUR
AU  - A. T. Fomenko
AU  - R. V. Chakon
TI  - Recursion relations for homogeneous terms of a convergent series of the logarithm of a multiplicative integral on Lie groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1990
SP  - 48
EP  - 58
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1990_24_1_a5/
LA  - ru
ID  - FAA_1990_24_1_a5
ER  - 
%0 Journal Article
%A A. T. Fomenko
%A R. V. Chakon
%T Recursion relations for homogeneous terms of a convergent series of the logarithm of a multiplicative integral on Lie groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1990
%P 48-58
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1990_24_1_a5/
%G ru
%F FAA_1990_24_1_a5
A. T. Fomenko; R. V. Chakon. Recursion relations for homogeneous terms of a convergent series of the logarithm of a multiplicative integral on Lie groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 24 (1990) no. 1, pp. 48-58. http://geodesic.mathdoc.fr/item/FAA_1990_24_1_a5/

[1] Arnold V.I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1972

[2] Dollard J.D., Friedman C.N., Product integration, v. 10. Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1979 | MR | Zbl

[3] Dubrovin B.A., Novikov C.P., Fomenko A.T., Sovremennaya geometriya, ch. 1, 2, Nauka, M., 1979 ; ч. 3, Наука, М., 1984 | MR

[4] Fomenko A.T., Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy, Izd-vo MGU, M., 1983 | Zbl

[5] Magnus W., “On the Exponential Solution of Differential Equations for a Linear Operator”, Commun. on Pure and Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl

[6] Garsia A.M., Combinatorics of the free Lie algebra and the symmetric group, Preprint, La Jolla, 1988, 1–62 | MR

[7] Hale J.K., Ordinary differential equations, Krieger, 1969 | MR

[8] Naimark M.A., Stern A.I., Theory of group representations, Springer-Verlag, N. Y., 1981 | MR

[9] Bialynicki-Birula, Mielnik B., Plebanski J., “Explicit Solution of the Continuous Baker–Campbell–Hausdorff Problem and a New Expression for the Phase Operator”, Ann. of Phys., 51 (1969), 187–200 | DOI

[10] Wilcox R.M., “Exponential Operators and Parameter Differentiation in Quantum Physics”, J. of Math. Phys., 8:1 (1967), 962–982 | DOI | MR | Zbl

[11] Froelich J., “Nikos Salingaros. The exponential mapping in Clifford algebras”, J. ofMath. Phys., 25:8 (1984), 2347–2350 | DOI | MR | Zbl

[12] Feynman R.P., “An operator calculus having applications in quantum electrodynamics”, Phys. Review, 84:1 (1951), 108–128 | DOI | MR | Zbl

[13] Friedrichs K.O., “Mathematical aspects of the quantum theory of fields”, Part V, Commun. on Pure and Appl. Math., 6 (1953), 1–72 | DOI | MR | Zbl

[14] Kapacev M.V., Mosolova M.V., “Beskonechnye proizvedeniya i $T$-proizvedeniya eksponent”, TMF, 28:2 (1976), 189–200 | MR

[15] Maslov V.P., Operatornye metody, Nauka, M., 1973 | MR

[16] Karasev M.V., Zadachnik po operatornym metodam, MIEM, M., 1979

[17] Fujiwaral J., Progr. Theor. Phys., 7 (1952), 435 | MR

[18] Wei J., Norman E., J. Math. Phys., 4 (1963), 575 | DOI | MR | Zbl