Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1981_15_3_a5, author = {M. V. Novitskii}, title = {Integral representation of completely excessive elements and completely $L$-superharmonic functions}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {67--78}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {1981}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1981_15_3_a5/} }
TY - JOUR AU - M. V. Novitskii TI - Integral representation of completely excessive elements and completely $L$-superharmonic functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1981 SP - 67 EP - 78 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1981_15_3_a5/ LA - ru ID - FAA_1981_15_3_a5 ER -
%0 Journal Article %A M. V. Novitskii %T Integral representation of completely excessive elements and completely $L$-superharmonic functions %J Funkcionalʹnyj analiz i ego priloženiâ %D 1981 %P 67-78 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1981_15_3_a5/ %G ru %F FAA_1981_15_3_a5
M. V. Novitskii. Integral representation of completely excessive elements and completely $L$-superharmonic functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 15 (1981) no. 3, pp. 67-78. http://geodesic.mathdoc.fr/item/FAA_1981_15_3_a5/
[1] Lelong P., “Sur les fonctions indefiniment derivables de plusieurs variables dont les laplaciens succesifs ont des signes alternes”, Duke Math. J., 14 (1947), 143–149 | DOI | MR | Zbl
[2] Novitskii M.V., “Predstavlenie vpolne $L$-supergarmonicheskikh funktsii”, Izv. AN SSSR, seriya matem., 39:6 (1975), 1346–1365 | MR | Zbl
[3] Novitskii M.V., “Integralnoe predstavlenie vpolne ekstsessivnykh elementov”, DAN SSSR, 225:3 (1975), 511–514 | MR
[4] Novitskii M.V., “Obschee integralnoe predstavlenie vpolne $L$-supergarmonicheskikh funktsii”, DAN SSSR, 236:3 (1977), 538–540 | MR
[5] Dynkin E.V., Markovskie protsessy, Fizmatgiz, M., 1963 | MR
[6] Shilov G.E., Gurevich B.L., Integral, mera i proizvodnaya, Nauka, M., 1967
[7] Funktsionalnyi analiz, Seriya «Spravochnaya matematicheskaya biblioteka», Nauka, M., 1972
[8] Ito S., “On existence of Green functions for Linear eUiptic operators of second order”, J. Math. Soc. Japan, 16:4 (1964), 334–342 | MR
[9] Ito S., “Martin boundary for linear eUiptic differential operators of second order in a manifolds”, J. Math. Soc. Japan, 16:4 (1964), 307–334 | MR | Zbl