Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 11 (1977) no. 4, pp. 19-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_1977_11_4_a2,
     author = {I. M. Gel'fand and S. G. Gindikin},
     title = {Complex manifolds whose skeletons are semisimple real {Lie} groups, and analytic discrete series of representations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/}
}
TY  - JOUR
AU  - I. M. Gel'fand
AU  - S. G. Gindikin
TI  - Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 1977
SP  - 19
EP  - 27
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/
LA  - ru
ID  - FAA_1977_11_4_a2
ER  - 
%0 Journal Article
%A I. M. Gel'fand
%A S. G. Gindikin
%T Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 1977
%P 19-27
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/
%G ru
%F FAA_1977_11_4_a2
I. M. Gel'fand; S. G. Gindikin. Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 11 (1977) no. 4, pp. 19-27. http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/

[1] Bargmann V., “Irreducible unitary representations of tlie Lorentz group”, Ann. Math., 48 (1947), 568–640 | DOI | MR | Zbl

[2] Harish Chandra, “Representations of semisimple Lie groups. VI”, Amer. J. Math., 78 (1956), 564–628 | DOI | MR | Zbl

[3] Lang S., $SL_2(\mathbf R)$, Add.-Wesley, 1975 | MR | Zbl

[4] Gelfand I.M., Graev M.I., Pyatetskii-Shapiro I.I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[5] Bochner S., “Group in variance of Canchy's formula in several variables”, Ann. Math., 45 (1944), 686–707 | DOI | MR | Zbl

[6] Gindikin S.G., “Analiz v odnorodnykh oblastyakh”, UMN, XIX:4 (1964), 3–92 | MR