Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_1977_11_4_a2, author = {I. M. Gel'fand and S. G. Gindikin}, title = {Complex manifolds whose skeletons are semisimple real {Lie} groups, and analytic discrete series of representations}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {19--27}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {1977}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/} }
TY - JOUR AU - I. M. Gel'fand AU - S. G. Gindikin TI - Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 1977 SP - 19 EP - 27 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/ LA - ru ID - FAA_1977_11_4_a2 ER -
%0 Journal Article %A I. M. Gel'fand %A S. G. Gindikin %T Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations %J Funkcionalʹnyj analiz i ego priloženiâ %D 1977 %P 19-27 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/ %G ru %F FAA_1977_11_4_a2
I. M. Gel'fand; S. G. Gindikin. Complex manifolds whose skeletons are semisimple real Lie groups, and analytic discrete series of representations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 11 (1977) no. 4, pp. 19-27. http://geodesic.mathdoc.fr/item/FAA_1977_11_4_a2/
[1] Bargmann V., “Irreducible unitary representations of tlie Lorentz group”, Ann. Math., 48 (1947), 568–640 | DOI | MR | Zbl
[2] Harish Chandra, “Representations of semisimple Lie groups. VI”, Amer. J. Math., 78 (1956), 564–628 | DOI | MR | Zbl
[3] Lang S., $SL_2(\mathbf R)$, Add.-Wesley, 1975 | MR | Zbl
[4] Gelfand I.M., Graev M.I., Pyatetskii-Shapiro I.I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR
[5] Bochner S., “Group in variance of Canchy's formula in several variables”, Ann. Math., 45 (1944), 686–707 | DOI | MR | Zbl
[6] Gindikin S.G., “Analiz v odnorodnykh oblastyakh”, UMN, XIX:4 (1964), 3–92 | MR