Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library
@article{EUG_1995__42_a15, author = {\ensuremath{\Gamma}. K\ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\kappa}\ensuremath{\acute\omega}\ensuremath{\sigma}\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\varsigma}}, title = {\ensuremath{\Sigma}\ensuremath{\tau}o\ensuremath{\iota}\ensuremath{\chi}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\alpha} {\ensuremath{\Delta}\ensuremath{\iota}\ensuremath{\alpha}\ensuremath{\varphi}o\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\omega}\ensuremath{\nu}} \ensuremath{\varepsilon}\ensuremath{\xi}\ensuremath{\iota}\ensuremath{\sigma}\ensuremath{\acute\omega}\ensuremath{\sigma}\ensuremath{\varepsilon}\ensuremath{\omega}\ensuremath{\nu} (\ensuremath{\gamma}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\mu}\ensuremath{\mu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\epsilon}\ensuremath{\varsigma} \ensuremath{\delta}\ensuremath{\iota}\ensuremath{\alpha}\ensuremath{\varphi}o\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\epsilon}\ensuremath{\varsigma} \ensuremath{\varepsilon}\ensuremath{\xi}\ensuremath{\iota}\ensuremath{\sigma}\ensuremath{\acute\omega}\ensuremath{\sigma}\ensuremath{\varepsilon}\ensuremath{\iota}\ensuremath{\varsigma} 1\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\tau}\ensuremath{\acute\alpha}\ensuremath{\xi}\ensuremath{\eta}\ensuremath{\varsigma}) \ensuremath{\kappa}\ensuremath{\alpha}\ensuremath{\iota} \ensuremath{\mu}\ensuremath{\varepsilon}\ensuremath{\rho}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\epsilon}\ensuremath{\varsigma} \ensuremath{\varepsilon}\ensuremath{\varphi}\ensuremath{\alpha}\ensuremath{\rho}\ensuremath{\mu}o\ensuremath{\gamma}\ensuremath{\acute\epsilon}\ensuremath{\varsigma}}, journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\Gamma} }, pages = {59-68}, publisher = {mathdoc}, volume = {42}, year = {1995}, language = {gr}, url = {http://geodesic.mathdoc.fr/item/EUG_1995__42_a15/} }
Γ. Καρακώστας. Στοιχεία Διαφορικών εξισώσεων (γραμμικές διαφορικές εξισώσεις 1ης τάξης) και μερικές εφαρμογές. Ευκλείδης Γ , Tome 42 (1995), p. 59-68. http://geodesic.mathdoc.fr/item/EUG_1995__42_a15/