The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group
Ευκλείδης Γ , Tome 29 (1991), p. 27-44.

Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library

@article{EUG_1991__29_a4,
     author = {M. V. D. Burmester and  Th. G. Exarhakos},
     title = {The function g(h) for which {|A(G)|p>=p^h} whenever {|G|>=p^g(h)} , {G} a finite {P-group}},
     journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\Gamma}
},
     pages = {27-44},
     publisher = {mathdoc},
     volume = {29},
     year = {1991},
     language = {gr},
     url = {http://geodesic.mathdoc.fr/item/EUG_1991__29_a4/}
}
TY  - JOUR
AU  - M. V. D. Burmester
AU  -  Th. G. Exarhakos
TI  - The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group
JO  - Ευκλείδης Γ

PY  - 1991
SP  - 27
EP  - 44
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EUG_1991__29_a4/
LA  - gr
ID  - EUG_1991__29_a4
ER  - 
%0 Journal Article
%A M. V. D. Burmester
%A  Th. G. Exarhakos
%T The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group
%J Ευκλείδης Γ

%D 1991
%P 27-44
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EUG_1991__29_a4/
%G gr
%F EUG_1991__29_a4
M. V. D. Burmester;  Th. G. Exarhakos. The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group. Ευκλείδης Γ
, Tome 29 (1991), p. 27-44. http://geodesic.mathdoc.fr/item/EUG_1991__29_a4/