The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group
Ευκλείδης Γ
, Tome 29 (1991), p. 27-44
Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library
@article{EUG_1991__29_a4,
author = {M. V. D. Burmester and Th. G. Exarhakos},
title = {The function g(h) for which {|A(G)|p>=p^h} whenever {|G|>=p^g(h)} , {G} a finite {P-group}},
journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\Gamma}
},
pages = {27-44},
publisher = {mathdoc},
volume = {29},
year = {1991},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/EUG_1991__29_a4/}
}
M. V. D. Burmester; Th. G. Exarhakos. The function g(h) for which |A(G)|p>=p^h whenever |G|>=p^g(h) , G a finite P-group. Ευκλείδης Γ , Tome 29 (1991), p. 27-44. http://geodesic.mathdoc.fr/item/EUG_1991__29_a4/