Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations
Ευκλείδης Γ , Tome 20 (1988), p. 149-158.

Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library

@article{EUG_1988__20_a13,
     author = {E. C. Zachmanoglou},
     title = {Solutions which are flat or {Singular} on {Totally} {Characteristic} {Manifolds} of first order {Partial} {Differential} {Equations}},
     journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\Gamma}
},
     pages = {149-158},
     publisher = {mathdoc},
     volume = {20},
     year = {1988},
     language = {gr},
     url = {http://geodesic.mathdoc.fr/item/EUG_1988__20_a13/}
}
TY  - JOUR
AU  - E. C. Zachmanoglou
TI  - Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations
JO  - Ευκλείδης Γ

PY  - 1988
SP  - 149
EP  - 158
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EUG_1988__20_a13/
LA  - gr
ID  - EUG_1988__20_a13
ER  - 
%0 Journal Article
%A E. C. Zachmanoglou
%T Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations
%J Ευκλείδης Γ

%D 1988
%P 149-158
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EUG_1988__20_a13/
%G gr
%F EUG_1988__20_a13
E. C. Zachmanoglou. Solutions which are flat or Singular on Totally Characteristic Manifolds of first order Partial Differential Equations. Ευκλείδης Γ
, Tome 20 (1988), p. 149-158. http://geodesic.mathdoc.fr/item/EUG_1988__20_a13/