Voir la notice de l'article provenant de la source Hellenic Digital Mathematics Library
@article{EUG_1983__1_a0, author = {\ensuremath{\Gamma}. \ensuremath{\Omega}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\iota}\'{o}\ensuremath{\pi}o\ensuremath{\upsilon}\ensuremath{\lambda}o\ensuremath{\varsigma}}, title = {\ensuremath{\Pi}o\ensuremath{\lambda}\ensuremath{\iota}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\sigma}\ensuremath{\mu}\'{o}\ensuremath{\varsigma} \ensuremath{\kappa}\ensuremath{\alpha}\ensuremath{\iota} {M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\alpha}.}}, journal = {E\ensuremath{\upsilon}\ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\varepsilon}\ensuremath{\acute\iota}\ensuremath{\delta}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\Gamma} }, pages = {3-5}, publisher = {mathdoc}, volume = {1}, year = {1983}, language = {gr}, url = {http://geodesic.mathdoc.fr/item/EUG_1983__1_a0/} }
Γ. Ωραιόπουλος. Πολιτισμός και Μαθηματικά.. Ευκλείδης Γ , Tome 1 (1983), p. 3-5. http://geodesic.mathdoc.fr/item/EUG_1983__1_a0/