Any finite convergence curve is possible in the initial iterations of restarted FOM
Electronic transactions on numerical analysis, Tome 45 (2016), pp. 133-145.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate the possible convergence behavior of the restarted full orthogonalization method (FOM) for non-Hermitian linear systems $A{\mathbf x} = {\mathbf b}$. For the GMRES method, it is known that any nonincreasing sequence of residual norms is possible, independent of the eigenvalues of $A \in \mathbb{C}^{n \times n}$. For FOM, however, there has not yet been any literature describing similar results. This paper complements the results for (restarted) GMRES by showing that any finite sequence of residual norms is possible in the first $n$ iterations of restarted FOM, where by finite we mean that we only consider the case that all FOM iterates are defined, and thus no "infinite" residual norms occur. We discuss the relation of our results to known results on restarted GMRES and give a new result concerning the possible convergence behavior of restarted GMRES for iteration counts exceeding the matrix dimension $n$. In addition, we give a conjecture on an implication of our result with respect to the convergence of the restarted Arnoldi approximation for $g(A){\mathbf b}$, the action of a matrix function on a vector.
Classification : 65F10, 65F50, 65F60
Keywords: linear systems, restarted Krylov subspace methods, full orthogonalization method, restarted arnoldi method for matrix functions, GMRES method
@article{ETNA_2016__45__a19,
     author = {Schweitzer, Marcel},
     title = {Any finite convergence curve is possible in the initial iterations of restarted {FOM}},
     journal = {Electronic transactions on numerical analysis},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {45},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2016__45__a19/}
}
TY  - JOUR
AU  - Schweitzer, Marcel
TI  - Any finite convergence curve is possible in the initial iterations of restarted FOM
JO  - Electronic transactions on numerical analysis
PY  - 2016
SP  - 133
EP  - 145
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2016__45__a19/
LA  - en
ID  - ETNA_2016__45__a19
ER  - 
%0 Journal Article
%A Schweitzer, Marcel
%T Any finite convergence curve is possible in the initial iterations of restarted FOM
%J Electronic transactions on numerical analysis
%D 2016
%P 133-145
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2016__45__a19/
%G en
%F ETNA_2016__45__a19
Schweitzer, Marcel. Any finite convergence curve is possible in the initial iterations of restarted FOM. Electronic transactions on numerical analysis, Tome 45 (2016), pp. 133-145. http://geodesic.mathdoc.fr/item/ETNA_2016__45__a19/