Monotone-comonotone approximation by fractal cubic splines and polynomials
Electronic transactions on numerical analysis, Tome 44 (2015), pp. 639-659.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We develop cubic fractal interpolation functions $H^{\alpha}$ as continuously differentiable $\alpha$-fractal functions corresponding to the traditional piecewise cubic interpolant $H$. The elements of the iterated function system are identified so that the class of $\alpha$-fractal functions $f^{\alpha}$ reflects the monotonicity and $\mathcal{C}^1$-continuity of the source function $f$. We use this monotonicity preserving fractal perturbation to: (i) prove the existence of piecewise defined fractal polynomials that are comonotone with a continuous function, (ii) obtain some estimates for monotone and comonotone approximation by fractal polynomials. Drawing on the Fritsch-Carlson theory of monotone cubic interpolation and the developed monotonicity preserving fractal perturbation, we describe an algorithm that constructs a class of monotone cubic fractal interpolation functions $H^{\alpha}$ for a prescribed set of monotone data. This new class of monotone interpolants provides a large flexibility in the choice of a differentiable monotone interpolant. Furthermore, the proposed class outperforms its traditional non-recursive counterpart in approximation of monotone functions whose first derivatives have varying irregularity/fractality (smooth to nowhere differentiable).
Classification : 65D05, 41A29, 41A30, 28A80
Keywords: fractal function, cubic Hermite fractal interpolation function, fractal polynomial, fritsch-Carlson algorithm, comonotonicity
@article{ETNA_2015__44__a0,
     author = {Viswanathan, Puthan Veedu and Chand, Arya Kumar Bedabrata},
     title = {Monotone-comonotone approximation by fractal cubic splines and polynomials},
     journal = {Electronic transactions on numerical analysis},
     pages = {639--659},
     publisher = {mathdoc},
     volume = {44},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2015__44__a0/}
}
TY  - JOUR
AU  - Viswanathan, Puthan Veedu
AU  - Chand, Arya Kumar Bedabrata
TI  - Monotone-comonotone approximation by fractal cubic splines and polynomials
JO  - Electronic transactions on numerical analysis
PY  - 2015
SP  - 639
EP  - 659
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2015__44__a0/
LA  - en
ID  - ETNA_2015__44__a0
ER  - 
%0 Journal Article
%A Viswanathan, Puthan Veedu
%A Chand, Arya Kumar Bedabrata
%T Monotone-comonotone approximation by fractal cubic splines and polynomials
%J Electronic transactions on numerical analysis
%D 2015
%P 639-659
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2015__44__a0/
%G en
%F ETNA_2015__44__a0
Viswanathan, Puthan Veedu; Chand, Arya Kumar Bedabrata. Monotone-comonotone approximation by fractal cubic splines and polynomials. Electronic transactions on numerical analysis, Tome 44 (2015), pp. 639-659. http://geodesic.mathdoc.fr/item/ETNA_2015__44__a0/