On the approximation of analytic functions by the $q$-Bernstein polynomials in the case $q > 1$
Electronic transactions on numerical analysis, Tome 37 (2010), pp. 105-112.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Since for q > 1, the q-Bernstein polynomials B are not positive linear operators on C[0, 1], the n,q investigation of their convergence properties turns out to be much more difficult than that in the case 0 q 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f $\in $C[0, 1] and admits an analytic continuation f (z) into z : |z| a, then B (f ; z) $\rightarrow f$ (z) as n $\rightarrow \infty $, uniformly on any compact set in z : |z| a.n,q
Classification : 41A10, 30E10
Keywords: q-integers, q-binomial coefficients, q-Bernstein polynomials, uniform convergence
@article{ETNA_2010__37__a20,
     author = {Ostrovska, Sofiya},
     title = {On the approximation of analytic functions by the $q${-Bernstein} polynomials in the case $q > 1$},
     journal = {Electronic transactions on numerical analysis},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {37},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2010__37__a20/}
}
TY  - JOUR
AU  - Ostrovska, Sofiya
TI  - On the approximation of analytic functions by the $q$-Bernstein polynomials in the case $q > 1$
JO  - Electronic transactions on numerical analysis
PY  - 2010
SP  - 105
EP  - 112
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2010__37__a20/
LA  - en
ID  - ETNA_2010__37__a20
ER  - 
%0 Journal Article
%A Ostrovska, Sofiya
%T On the approximation of analytic functions by the $q$-Bernstein polynomials in the case $q > 1$
%J Electronic transactions on numerical analysis
%D 2010
%P 105-112
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2010__37__a20/
%G en
%F ETNA_2010__37__a20
Ostrovska, Sofiya. On the approximation of analytic functions by the $q$-Bernstein polynomials in the case $q > 1$. Electronic transactions on numerical analysis, Tome 37 (2010), pp. 105-112. http://geodesic.mathdoc.fr/item/ETNA_2010__37__a20/