Using FGMRES to obtain backward stability in mixed precision
Electronic transactions on numerical analysis, Tome 33 (2009).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution.
Classification : 65F05, 65F10, 65F50, 65G20, 65G50
Keywords: FGMRES, mixed precision arithmetic, hybrid method, direct factorization, iterative methods, large sparse systems, error analysis
@article{ETNA_2009__33__a10,
     author = {Arioli, M. and Duff, I.S.},
     title = {Using {FGMRES} to obtain backward stability in mixed precision},
     journal = {Electronic transactions on numerical analysis},
     publisher = {mathdoc},
     volume = {33},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2009__33__a10/}
}
TY  - JOUR
AU  - Arioli, M.
AU  - Duff, I.S.
TI  - Using FGMRES to obtain backward stability in mixed precision
JO  - Electronic transactions on numerical analysis
PY  - 2009
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2009__33__a10/
LA  - en
ID  - ETNA_2009__33__a10
ER  - 
%0 Journal Article
%A Arioli, M.
%A Duff, I.S.
%T Using FGMRES to obtain backward stability in mixed precision
%J Electronic transactions on numerical analysis
%D 2009
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2009__33__a10/
%G en
%F ETNA_2009__33__a10
Arioli, M.; Duff, I.S. Using FGMRES to obtain backward stability in mixed precision. Electronic transactions on numerical analysis, Tome 33 (2009). http://geodesic.mathdoc.fr/item/ETNA_2009__33__a10/