Obtaining bounds on the two norm of a matrix from the splitting lemma
Electronic transactions on numerical analysis, Tome 21 (2005), pp. 28-46.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The splitting lemma is one of the two main tools of $support theory$, a framework for bounding the condition number of definite and semidefinite preconditioned linear systems. The splitting lemma allows the analysis of a complicated system to be partitioned into analyses of simpler systems. The other tool is the symmetric-productsupport lemma, which provides an explicit spectral bound on a preconditioned matrix.
Classification : 15A60, 65F10, 65F35, 65F50
Keywords: matrix norm bounds, two-norm, norm bounds for sparse matrices, splitting Lemma, support theory, support preconditioning
@article{ETNA_2005__21__a6,
     author = {Chen, Doron and Gilbert, John R. and Toledo, Sivan},
     title = {Obtaining bounds on the two norm of a matrix from the splitting lemma},
     journal = {Electronic transactions on numerical analysis},
     pages = {28--46},
     publisher = {mathdoc},
     volume = {21},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2005__21__a6/}
}
TY  - JOUR
AU  - Chen, Doron
AU  - Gilbert, John R.
AU  - Toledo, Sivan
TI  - Obtaining bounds on the two norm of a matrix from the splitting lemma
JO  - Electronic transactions on numerical analysis
PY  - 2005
SP  - 28
EP  - 46
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2005__21__a6/
LA  - en
ID  - ETNA_2005__21__a6
ER  - 
%0 Journal Article
%A Chen, Doron
%A Gilbert, John R.
%A Toledo, Sivan
%T Obtaining bounds on the two norm of a matrix from the splitting lemma
%J Electronic transactions on numerical analysis
%D 2005
%P 28-46
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2005__21__a6/
%G en
%F ETNA_2005__21__a6
Chen, Doron; Gilbert, John R.; Toledo, Sivan. Obtaining bounds on the two norm of a matrix from the splitting lemma. Electronic transactions on numerical analysis, Tome 21 (2005), pp. 28-46. http://geodesic.mathdoc.fr/item/ETNA_2005__21__a6/