Improved initialization of the accelerated and robust QR-like polynomial root-finding
Electronic transactions on numerical analysis, Tome 17 (2004), pp. 195-205.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We approximate polynomial roots numerically as the eigenvalues of a unitary diagonal plus rank-one matrix. We rely on our earlier adaptation of the algorithm, which exploits the semiseparable matrix structure to $$#############$$ approximate the eigenvalues in a fast and robust way, but we substantially improve the performance of the resulting algorithm at the initial stage, as confirmed by our numerical tests.
Classification : 65H17, 65F15
Keywords: iteration, eigenvalue computation, polynomial roots, semiseparable matrices, DFT, FFT, moe- $$###$$§$$###$$ bius transformation
@article{ETNA_2004__17__a2,
     author = {Bini, Dario A. and Gemignani, Luca and Pan, Victor Y.},
     title = {Improved initialization of the accelerated and robust {QR-like} polynomial root-finding},
     journal = {Electronic transactions on numerical analysis},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {17},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2004__17__a2/}
}
TY  - JOUR
AU  - Bini, Dario A.
AU  - Gemignani, Luca
AU  - Pan, Victor Y.
TI  - Improved initialization of the accelerated and robust QR-like polynomial root-finding
JO  - Electronic transactions on numerical analysis
PY  - 2004
SP  - 195
EP  - 205
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2004__17__a2/
LA  - en
ID  - ETNA_2004__17__a2
ER  - 
%0 Journal Article
%A Bini, Dario A.
%A Gemignani, Luca
%A Pan, Victor Y.
%T Improved initialization of the accelerated and robust QR-like polynomial root-finding
%J Electronic transactions on numerical analysis
%D 2004
%P 195-205
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2004__17__a2/
%G en
%F ETNA_2004__17__a2
Bini, Dario A.; Gemignani, Luca; Pan, Victor Y. Improved initialization of the accelerated and robust QR-like polynomial root-finding. Electronic transactions on numerical analysis, Tome 17 (2004), pp. 195-205. http://geodesic.mathdoc.fr/item/ETNA_2004__17__a2/