An algorithm for nonharmonic signal analysis using Dirichlet series on convex polygons
Electronic transactions on numerical analysis, Tome 14 (2002), pp. 45-55.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article presents a new algorithm for nonharmonic signal analysis using Dirichlet series e$\lambda z$ f (z) = $\kappa f (\lambda )$ , z $\in D$ L $(\lambda ) \lambda \in \Lambda $on a convex polygon D as a generalization of Fourier series. Here L denotes a quasipolynomial whose set of zeros $\Lambda $generates a Riesz basis $E(\Lambda )$ := e$\lambda z$ of the Smirnov space $E2(D)$. The algorithm is based on a simple L $(\lambda ) \lambda \in \Lambda $form of L and on numerical properties of the dual basis of E $(\Lambda )$.
Classification : 42C15, 30B50, 37M10
Keywords: nonharmonic Fourier series, Dirichlet series, signal analysis, time series analysis
@article{ETNA_2002__14__a9,
     author = {Forster, Brigitte},
     title = {An algorithm for nonharmonic signal analysis using {Dirichlet} series on convex polygons},
     journal = {Electronic transactions on numerical analysis},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {14},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2002__14__a9/}
}
TY  - JOUR
AU  - Forster, Brigitte
TI  - An algorithm for nonharmonic signal analysis using Dirichlet series on convex polygons
JO  - Electronic transactions on numerical analysis
PY  - 2002
SP  - 45
EP  - 55
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2002__14__a9/
LA  - en
ID  - ETNA_2002__14__a9
ER  - 
%0 Journal Article
%A Forster, Brigitte
%T An algorithm for nonharmonic signal analysis using Dirichlet series on convex polygons
%J Electronic transactions on numerical analysis
%D 2002
%P 45-55
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2002__14__a9/
%G en
%F ETNA_2002__14__a9
Forster, Brigitte. An algorithm for nonharmonic signal analysis using Dirichlet series on convex polygons. Electronic transactions on numerical analysis, Tome 14 (2002), pp. 45-55. http://geodesic.mathdoc.fr/item/ETNA_2002__14__a9/