Perturbation analysis for eigenstructure assignment of linear multi-input systems
Electronic transactions on numerical analysis, Tome 11 (2000), pp. 25-42.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The state-feedback pole (or eigenvalue) assignment problem is a fundamental problem in control system design. The term $eigenstructure$ denotes the specification of eigenvalues $and$ eigenvectors (or certain properties of the latter). Normally, the eigenvectors are calculated as an intermediate solution. In assignment for multi-input systems, the solution (the feedback matrix) is not unique. However, the solution is unique if the eigenvectors are set.
Classification : 15A18, 65F15, 65F35, 93B55
Keywords: controllable system, state feedback, eigenstructure assignment, multi-input pole assignment, perturbation analysis
@article{ETNA_2000__11__a6,
     author = {Cawood, M.E. and Cox, C.L.},
     title = {Perturbation analysis for eigenstructure assignment of linear multi-input systems},
     journal = {Electronic transactions on numerical analysis},
     pages = {25--42},
     publisher = {mathdoc},
     volume = {11},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2000__11__a6/}
}
TY  - JOUR
AU  - Cawood, M.E.
AU  - Cox, C.L.
TI  - Perturbation analysis for eigenstructure assignment of linear multi-input systems
JO  - Electronic transactions on numerical analysis
PY  - 2000
SP  - 25
EP  - 42
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2000__11__a6/
LA  - en
ID  - ETNA_2000__11__a6
ER  - 
%0 Journal Article
%A Cawood, M.E.
%A Cox, C.L.
%T Perturbation analysis for eigenstructure assignment of linear multi-input systems
%J Electronic transactions on numerical analysis
%D 2000
%P 25-42
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2000__11__a6/
%G en
%F ETNA_2000__11__a6
Cawood, M.E.; Cox, C.L. Perturbation analysis for eigenstructure assignment of linear multi-input systems. Electronic transactions on numerical analysis, Tome 11 (2000), pp. 25-42. http://geodesic.mathdoc.fr/item/ETNA_2000__11__a6/