Cholesky-like factorizations of skew-symmetric matrices
Electronic transactions on numerical analysis, Tome 11 (2000), pp. 85-93.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Every real skew-symmetric matrix B admits Cholesky-like factorizations B = RT J R, where J = 0 I . This paper presents a backward-stable $O(n3)$ process for computing such a decomposition, in - I 0 which R is a permuted triangular matrix. Decompositions of this type are a key ingredient of algorithms for solving eigenvalue problems with Hamiltonian structure.
Classification : 15A23, 65F05
Keywords: skew-symmetric matrices, matrix factorizations, Hamiltonian eigenproblems, complete pivoting
@article{ETNA_2000__11__a3,
     author = {Benner, Peter and Byers, Ralph and Fassbender, Heike and Mehrmann, Volker and Watkins, David},
     title = {Cholesky-like factorizations of skew-symmetric matrices},
     journal = {Electronic transactions on numerical analysis},
     pages = {85--93},
     publisher = {mathdoc},
     volume = {11},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2000__11__a3/}
}
TY  - JOUR
AU  - Benner, Peter
AU  - Byers, Ralph
AU  - Fassbender, Heike
AU  - Mehrmann, Volker
AU  - Watkins, David
TI  - Cholesky-like factorizations of skew-symmetric matrices
JO  - Electronic transactions on numerical analysis
PY  - 2000
SP  - 85
EP  - 93
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2000__11__a3/
LA  - en
ID  - ETNA_2000__11__a3
ER  - 
%0 Journal Article
%A Benner, Peter
%A Byers, Ralph
%A Fassbender, Heike
%A Mehrmann, Volker
%A Watkins, David
%T Cholesky-like factorizations of skew-symmetric matrices
%J Electronic transactions on numerical analysis
%D 2000
%P 85-93
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2000__11__a3/
%G en
%F ETNA_2000__11__a3
Benner, Peter; Byers, Ralph; Fassbender, Heike; Mehrmann, Volker; Watkins, David. Cholesky-like factorizations of skew-symmetric matrices. Electronic transactions on numerical analysis, Tome 11 (2000), pp. 85-93. http://geodesic.mathdoc.fr/item/ETNA_2000__11__a3/