Harmonic Ritz and Lehmann bounds
Electronic transactions on numerical analysis, Tome 7 (1998), pp. 18-39.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article reviews a variety of results related to optimal bounds for matrix eigenvalues - some results presented here are well-known; others are less known; and a few are new. The focus rests especially on Ritz and harmonic Ritz values, and rightand left-definite variants of Lehmann's optimal bounds. Two new computationally advantageous reformulations of left-definite Lehmann bounds are introduced, together with a discussion indicating why they might be preferable to the cheaper right-definite bounds.
Classification : 65F15, 49R05
Keywords: optimal eigenvalue bounds, lehmann intervals, harmonic ritz values
@article{ETNA_1998__7__a11,
     author = {Beattie, Christopher},
     title = {Harmonic {Ritz} and {Lehmann} bounds},
     journal = {Electronic transactions on numerical analysis},
     pages = {18--39},
     publisher = {mathdoc},
     volume = {7},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1998__7__a11/}
}
TY  - JOUR
AU  - Beattie, Christopher
TI  - Harmonic Ritz and Lehmann bounds
JO  - Electronic transactions on numerical analysis
PY  - 1998
SP  - 18
EP  - 39
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1998__7__a11/
LA  - en
ID  - ETNA_1998__7__a11
ER  - 
%0 Journal Article
%A Beattie, Christopher
%T Harmonic Ritz and Lehmann bounds
%J Electronic transactions on numerical analysis
%D 1998
%P 18-39
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1998__7__a11/
%G en
%F ETNA_1998__7__a11
Beattie, Christopher. Harmonic Ritz and Lehmann bounds. Electronic transactions on numerical analysis, Tome 7 (1998), pp. 18-39. http://geodesic.mathdoc.fr/item/ETNA_1998__7__a11/