A multigrid algorithm for higher order finite elements on sparse grids
Electronic transactions on numerical analysis, Tome 6 (1997), pp. 63-77.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For most types of problems in numerical mathematics, efficient discretization techniques are of crucial importance. This holds for tasks like how to define sets of points to approximate, interpolate, or integrate certain classes of functions as accurate as possible as well as for the numerical solution of differential equations.
Classification : 35J05, 65N15, 65N30, 65N55
Keywords: sparse grids, finite element method, higher order elements, multigrid methods
@article{ETNA_1997__6__a15,
     author = {Bungartz, Hans-Joachim},
     title = {A multigrid algorithm for higher order finite elements on sparse grids},
     journal = {Electronic transactions on numerical analysis},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {6},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1997__6__a15/}
}
TY  - JOUR
AU  - Bungartz, Hans-Joachim
TI  - A multigrid algorithm for higher order finite elements on sparse grids
JO  - Electronic transactions on numerical analysis
PY  - 1997
SP  - 63
EP  - 77
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1997__6__a15/
LA  - en
ID  - ETNA_1997__6__a15
ER  - 
%0 Journal Article
%A Bungartz, Hans-Joachim
%T A multigrid algorithm for higher order finite elements on sparse grids
%J Electronic transactions on numerical analysis
%D 1997
%P 63-77
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1997__6__a15/
%G en
%F ETNA_1997__6__a15
Bungartz, Hans-Joachim. A multigrid algorithm for higher order finite elements on sparse grids. Electronic transactions on numerical analysis, Tome 6 (1997), pp. 63-77. http://geodesic.mathdoc.fr/item/ETNA_1997__6__a15/