Minimal Gerschgorin sets for partitioned matrices. III: Sharpness of boundaries and monotonicity as a function of the partition
Electronic transactions on numerical analysis, Tome 3 (1995), pp. 83-95.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Making use, from the preceding paper, of the affirmative solution of the Spectral Conjecture, it is shown here that the general boundaries, of the minimal Gerschgorin sets for partitioned matrices, are sharp, and that monotonicity of these minimal Gerschgorin sets, as a function of the partitionings, is obtained. These results extend and sharpen an earlier paper from 1970 on this topic.
Classification : 15A18
Keywords: minimal Gerschgorin sets, partitioned matrices, monotonicity
@article{ETNA_1995__3__a4,
     author = {Varga, Richard S. and Krautstengl, Alan},
     title = {Minimal {Gerschgorin} sets for partitioned matrices. {III:} {Sharpness} of boundaries and monotonicity as a function of the partition},
     journal = {Electronic transactions on numerical analysis},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1995__3__a4/}
}
TY  - JOUR
AU  - Varga, Richard S.
AU  - Krautstengl, Alan
TI  - Minimal Gerschgorin sets for partitioned matrices. III: Sharpness of boundaries and monotonicity as a function of the partition
JO  - Electronic transactions on numerical analysis
PY  - 1995
SP  - 83
EP  - 95
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1995__3__a4/
LA  - en
ID  - ETNA_1995__3__a4
ER  - 
%0 Journal Article
%A Varga, Richard S.
%A Krautstengl, Alan
%T Minimal Gerschgorin sets for partitioned matrices. III: Sharpness of boundaries and monotonicity as a function of the partition
%J Electronic transactions on numerical analysis
%D 1995
%P 83-95
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1995__3__a4/
%G en
%F ETNA_1995__3__a4
Varga, Richard S.; Krautstengl, Alan. Minimal Gerschgorin sets for partitioned matrices. III: Sharpness of boundaries and monotonicity as a function of the partition. Electronic transactions on numerical analysis, Tome 3 (1995), pp. 83-95. http://geodesic.mathdoc.fr/item/ETNA_1995__3__a4/