Displacement preconditioner for Toeplitz least squares iterations
Electronic transactions on numerical analysis, Tome 2 (1994), pp. 44-56.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the solution of least squares problems min ||b - Ax||2 by the preconditioned conjugate gradient (PCG) method, for m $\times n$ complex Toeplitz matrices A of rank n. A circulant preconditioner C is derived using the T. Chan optimal preconditioner for n $\times n$ matrices using the displacement representation of A$\ast A$. This allows the fast Fourier transform (FFT) to be used throughout the computations, for high numerical efficiency. Of course A$\ast A$ need never be formed explicitly. Displacement-based preconditioners have also been shown to be very effective in linear estimation and adaptive filtering. For Toeplitz matrices A that are generated by $2\pi $-periodic continuous complex-valued functions without any zeros, we prove that the singular values of the preconditioned matrix AC - 1 are clustered around 1, for sufficiently large n. We show that if the condition number of A is of $O(n\alpha ), \alpha > 0$, then the least squares conjugate gradient method converges in at most $O(\alpha \log n + 1)$ steps. Since each iteration requires only $O(m \log n)$ operations using the FFT, it follows that the total complexity of the algorithm is then only $O(\alpha m log2 n + m \log n)$.
Classification : 65F10, 65F15
Keywords: circulant preconditioner, conjugate gradient, displacement representation, fast Fourier transform (FFT), Toeplitz operator
@article{ETNA_1994__2__a10,
     author = {Chan, Raymond H. and Nagy, James G. and Plemmons, Robert J.},
     title = {Displacement preconditioner for {Toeplitz} least squares iterations},
     journal = {Electronic transactions on numerical analysis},
     pages = {44--56},
     publisher = {mathdoc},
     volume = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1994__2__a10/}
}
TY  - JOUR
AU  - Chan, Raymond H.
AU  - Nagy, James G.
AU  - Plemmons, Robert J.
TI  - Displacement preconditioner for Toeplitz least squares iterations
JO  - Electronic transactions on numerical analysis
PY  - 1994
SP  - 44
EP  - 56
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1994__2__a10/
LA  - en
ID  - ETNA_1994__2__a10
ER  - 
%0 Journal Article
%A Chan, Raymond H.
%A Nagy, James G.
%A Plemmons, Robert J.
%T Displacement preconditioner for Toeplitz least squares iterations
%J Electronic transactions on numerical analysis
%D 1994
%P 44-56
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1994__2__a10/
%G en
%F ETNA_1994__2__a10
Chan, Raymond H.; Nagy, James G.; Plemmons, Robert J. Displacement preconditioner for Toeplitz least squares iterations. Electronic transactions on numerical analysis, Tome 2 (1994), pp. 44-56. http://geodesic.mathdoc.fr/item/ETNA_1994__2__a10/