Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains
Electronic transactions on numerical analysis, Tome 1 (1993), pp. 49-71.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Faber polynomials play an important role in different areas of constructive complex analysis. Here, the zeros and local extreme points of Faber polynomials for hypocycloidal domains are studied. For this task, we use tools from linear algebra, namely, the Perron-Frobenius theory of nonnegative matrices, the Gantmacher-Krein theory of oscillation matrices, and the Schmidt-Spitzer theory for the asymptotic spectral behavior of banded Toeplitz matrices.
Classification : 30C15, 15A48, 15A57
Keywords: Faber polynomials, cyclic of index p matrices, oscillation matrices
@article{ETNA_1993__1__a3,
     author = {Eiermann, Michael and Varga, Richard S.},
     title = {Zeros and local extreme points of {Faber} polynomials associated with hypocycloidal domains},
     journal = {Electronic transactions on numerical analysis},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1993__1__a3/}
}
TY  - JOUR
AU  - Eiermann, Michael
AU  - Varga, Richard S.
TI  - Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains
JO  - Electronic transactions on numerical analysis
PY  - 1993
SP  - 49
EP  - 71
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1993__1__a3/
LA  - en
ID  - ETNA_1993__1__a3
ER  - 
%0 Journal Article
%A Eiermann, Michael
%A Varga, Richard S.
%T Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains
%J Electronic transactions on numerical analysis
%D 1993
%P 49-71
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1993__1__a3/
%G en
%F ETNA_1993__1__a3
Eiermann, Michael; Varga, Richard S. Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains. Electronic transactions on numerical analysis, Tome 1 (1993), pp. 49-71. http://geodesic.mathdoc.fr/item/ETNA_1993__1__a3/