Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_3_a7, author = {G. Verma and A. Eberhard}, title = {Weaving frames linked with fractal convolutions}, journal = {Eurasian mathematical journal}, pages = {77--87}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a7/} }
G. Verma; A. Eberhard. Weaving frames linked with fractal convolutions. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 77-87. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a7/
[1] A. Aldroubi, “Portraits of frames”, Proc. Amer. Math. Soc., 123:2 (1995), 1661–1668 | DOI
[2] T. Bemrose, P. G. Casazza, K. Grochenig, M. C. Lammers, R. G. Lynch, “Weaving frames”, Oper. Matrices, 10:4 (2016), 1093–1116 | DOI
[3] M. C. Barnsley, “Fractals functions and interpolation”, Constr. Approx, 2 (1986), 303–329 | DOI
[4] P. G. Casazza, G. Kutyniok, Finite frames: theory and applications, Birkhauser, 2012
[5] P. G. Casazza, O. Christensen, “Frames containing a Riesz basis and preservation of this property under perturbations”, SIAM J. Math. Anal., 29 (1998), 266–278 | DOI
[6] P. G. Casazza, D. Han, D. R. Larson, “Frames for Banach spaces”, Contemp. Math., 247, 1999, 149–182 | DOI
[7] P. G. Casazza, N. J. Kalton, “Generalizing the Paley-Wiener perturbation theory for Banach spaces”, Amer. Proc. Math. Soc., 127:2 (1999), 519–527 | DOI
[8] O. Christensen, “Frame perturbations”, Proc. Amer. Math. Soc., 123:4 (1995), 1217–1220 | DOI
[9] Deepshikha, L. K. Vashisht, G. Verma, “Generalized weaving frames for operators in Hilbert spaces”, Results Math., 2017, no. 3, 1369–1391 | DOI
[10] Deepshikha, L. K. Vashisht, Weaving K-frames in Hilbert spaces, Results Math., 73, no. 2, 2018, 20 pp. | DOI
[11] Deepshikha, L. K. Vashisht, “On weaving frames”, Houston J. Math., 44:3 (2018), 887–915
[12] Deepshikha, L. K. Vashisht, “Vector-valued (Super) weaving frames”, J. Geom. Phys., 134 (2018), 48–57 | DOI
[13] R. J. Duffin, A. C. Schaeffer, “A class of non-harmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI
[14] S. J. Favier, R. A. Zalik, “On the stability of frames and Riesz bases”, Appl. Comput. Harmon. Anal., 2 (1995), 160–173 | DOI
[15] Jyoti, L. K. Vashisht, G. Verma, “Operators related to the reconstruction property in Banach spaces”, Results Math., 74:3 (2019), 125, 17 pp. | DOI
[16] T. Kato, Perturbation theory for linear operators, Second Edition, Springer-Verlag, Berlin–Heidelberg–New York, 1976
[17] G. Khattar, L. K. Vashisht, “The reconstruction property in Banach spaces generated by matrices”, Adv. Pure Appl. Math., 5:3 (2014), 151–160 | DOI
[18] P. R. Massopust, Fractal functions, fractal surfaces, and wavelets, 2016
[19] M.A, Navascues, “Fractal polynomial interpolation”, Zeit. Anal. Anwen., 24 (2005), 401–418 | DOI
[20] M. A. Navascues, “Fractal bases of $L^p$ spaces”, Fractals, 20:2 (2012), 141–148 | DOI
[21] M. A. Navascues, A. K.B. Chand, “Fundamental sets of fractal functions”, Acta Appl. Math., 100:3 (2008), 247–261 | DOI
[22] M. A. Navascues, P. Massopust, “Fractal convolution: a new operation between functions”, Advances in Operator. Theory, 22:3 (2019), 619–643
[23] M. A. Navascues, P. Viswanathan, A. K.B. Chand, M. V. Sebastian, S. K. Katiyar, “Fractal bases for Banach spaces of smooth functions”, Bull. Aust. Math. Soc., 92 (2015), 405–419 | DOI
[24] M. A. Navascues, P. Viswanathan, R. Mohapatra, “Convolved fractal bases and frames”, Advances in Operator. Theory, 6 (2021) | DOI
[25] L. K. Vashisht, Deepshikha, “Weaving properties of generalized continuous frames generated by an iterated function system”, J. Geom. Phys., 110 (2016), 282–295 | DOI
[26] L. K. Vashisht, Deepshikha, “On continuous weaving frames”, Adv. Pure Appl. Math., 8:1 (2017), 15–31 | DOI
[27] J. Contemp. Math. Anal.
[28] J. Contemp. Math. Anal. | DOI