Weaving frames linked with fractal convolutions
Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 77-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weaving frames have been introduced to deal with some problems in signal processing and wireless sensor networks. More recently, the notion of fractal operator and fractal convolutions have been linked with perturbation theory of Schauder bases and frames. However, the existing literature has established limited connections between the theory of fractals and frame expansions. In this paper we de ne weaving frames generated via fractal operators combined with fractal convolutions. The aim is to demonstrate how partial fractal convolutions are associated to Riesz bases, frames and the concept of weaving frames in a Hilbert space. The context deals with ones-sided convolutions i.e both left and right partial fractal convolution operators on Lebesgue space $L^p$ ($1\leqslant p\leqslant\infty$). Some applications using partial fractal convolutions with null function have been obtained for the perturbation theory of bases and weaving frames.
@article{EMJ_2024_15_3_a7,
     author = {G. Verma and A. Eberhard},
     title = {Weaving frames linked with fractal convolutions},
     journal = {Eurasian mathematical journal},
     pages = {77--87},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a7/}
}
TY  - JOUR
AU  - G. Verma
AU  - A. Eberhard
TI  - Weaving frames linked with fractal convolutions
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 77
EP  - 87
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a7/
LA  - en
ID  - EMJ_2024_15_3_a7
ER  - 
%0 Journal Article
%A G. Verma
%A A. Eberhard
%T Weaving frames linked with fractal convolutions
%J Eurasian mathematical journal
%D 2024
%P 77-87
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a7/
%G en
%F EMJ_2024_15_3_a7
G. Verma; A. Eberhard. Weaving frames linked with fractal convolutions. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 77-87. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a7/

[1] A. Aldroubi, “Portraits of frames”, Proc. Amer. Math. Soc., 123:2 (1995), 1661–1668 | DOI

[2] T. Bemrose, P. G. Casazza, K. Grochenig, M. C. Lammers, R. G. Lynch, “Weaving frames”, Oper. Matrices, 10:4 (2016), 1093–1116 | DOI

[3] M. C. Barnsley, “Fractals functions and interpolation”, Constr. Approx, 2 (1986), 303–329 | DOI

[4] P. G. Casazza, G. Kutyniok, Finite frames: theory and applications, Birkhauser, 2012

[5] P. G. Casazza, O. Christensen, “Frames containing a Riesz basis and preservation of this property under perturbations”, SIAM J. Math. Anal., 29 (1998), 266–278 | DOI

[6] P. G. Casazza, D. Han, D. R. Larson, “Frames for Banach spaces”, Contemp. Math., 247, 1999, 149–182 | DOI

[7] P. G. Casazza, N. J. Kalton, “Generalizing the Paley-Wiener perturbation theory for Banach spaces”, Amer. Proc. Math. Soc., 127:2 (1999), 519–527 | DOI

[8] O. Christensen, “Frame perturbations”, Proc. Amer. Math. Soc., 123:4 (1995), 1217–1220 | DOI

[9] Deepshikha, L. K. Vashisht, G. Verma, “Generalized weaving frames for operators in Hilbert spaces”, Results Math., 2017, no. 3, 1369–1391 | DOI

[10] Deepshikha, L. K. Vashisht, Weaving K-frames in Hilbert spaces, Results Math., 73, no. 2, 2018, 20 pp. | DOI

[11] Deepshikha, L. K. Vashisht, “On weaving frames”, Houston J. Math., 44:3 (2018), 887–915

[12] Deepshikha, L. K. Vashisht, “Vector-valued (Super) weaving frames”, J. Geom. Phys., 134 (2018), 48–57 | DOI

[13] R. J. Duffin, A. C. Schaeffer, “A class of non-harmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI

[14] S. J. Favier, R. A. Zalik, “On the stability of frames and Riesz bases”, Appl. Comput. Harmon. Anal., 2 (1995), 160–173 | DOI

[15] Jyoti, L. K. Vashisht, G. Verma, “Operators related to the reconstruction property in Banach spaces”, Results Math., 74:3 (2019), 125, 17 pp. | DOI

[16] T. Kato, Perturbation theory for linear operators, Second Edition, Springer-Verlag, Berlin–Heidelberg–New York, 1976

[17] G. Khattar, L. K. Vashisht, “The reconstruction property in Banach spaces generated by matrices”, Adv. Pure Appl. Math., 5:3 (2014), 151–160 | DOI

[18] P. R. Massopust, Fractal functions, fractal surfaces, and wavelets, 2016

[19] M.A, Navascues, “Fractal polynomial interpolation”, Zeit. Anal. Anwen., 24 (2005), 401–418 | DOI

[20] M. A. Navascues, “Fractal bases of $L^p$ spaces”, Fractals, 20:2 (2012), 141–148 | DOI

[21] M. A. Navascues, A. K.B. Chand, “Fundamental sets of fractal functions”, Acta Appl. Math., 100:3 (2008), 247–261 | DOI

[22] M. A. Navascues, P. Massopust, “Fractal convolution: a new operation between functions”, Advances in Operator. Theory, 22:3 (2019), 619–643

[23] M. A. Navascues, P. Viswanathan, A. K.B. Chand, M. V. Sebastian, S. K. Katiyar, “Fractal bases for Banach spaces of smooth functions”, Bull. Aust. Math. Soc., 92 (2015), 405–419 | DOI

[24] M. A. Navascues, P. Viswanathan, R. Mohapatra, “Convolved fractal bases and frames”, Advances in Operator. Theory, 6 (2021) | DOI

[25] L. K. Vashisht, Deepshikha, “Weaving properties of generalized continuous frames generated by an iterated function system”, J. Geom. Phys., 110 (2016), 282–295 | DOI

[26] L. K. Vashisht, Deepshikha, “On continuous weaving frames”, Adv. Pure Appl. Math., 8:1 (2017), 15–31 | DOI

[27] J. Contemp. Math. Anal.

[28] J. Contemp. Math. Anal. | DOI