Barrier composed of perforated resonators and boundary conditions
Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 68-76
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Laplace operator with the Neumann boundary condition in a two-dimensional domain divided by a barrier composed of many small Helmholtz resonators coupled with the both parts of the domain through small windows of diameter $2a$. The main terms of the asymptotic expansions in a of the eigenvalues and eigenfunctions are considered in the case in which the number of the Helmholtz resonators tends to innity. It is shown that such a homogenization procedure leads to some energy-dependent boundary condition in the limit. We use the method of matching the asymptotic expansions of boundary value problem solutions.
@article{EMJ_2024_15_3_a6,
author = {I. Y. Popov and E. S. Trifanova and A. S. Bagmutov and I. V. Blinova},
title = {Barrier composed of perforated resonators and boundary conditions},
journal = {Eurasian mathematical journal},
pages = {68--76},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/}
}
TY - JOUR AU - I. Y. Popov AU - E. S. Trifanova AU - A. S. Bagmutov AU - I. V. Blinova TI - Barrier composed of perforated resonators and boundary conditions JO - Eurasian mathematical journal PY - 2024 SP - 68 EP - 76 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/ LA - en ID - EMJ_2024_15_3_a6 ER -
%0 Journal Article %A I. Y. Popov %A E. S. Trifanova %A A. S. Bagmutov %A I. V. Blinova %T Barrier composed of perforated resonators and boundary conditions %J Eurasian mathematical journal %D 2024 %P 68-76 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/ %G en %F EMJ_2024_15_3_a6
I. Y. Popov; E. S. Trifanova; A. S. Bagmutov; I. V. Blinova. Barrier composed of perforated resonators and boundary conditions. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 68-76. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/