Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_3_a6, author = {I. Y. Popov and E. S. Trifanova and A. S. Bagmutov and I. V. Blinova}, title = {Barrier composed of perforated resonators and boundary conditions}, journal = {Eurasian mathematical journal}, pages = {68--76}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/} }
TY - JOUR AU - I. Y. Popov AU - E. S. Trifanova AU - A. S. Bagmutov AU - I. V. Blinova TI - Barrier composed of perforated resonators and boundary conditions JO - Eurasian mathematical journal PY - 2024 SP - 68 EP - 76 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/ LA - en ID - EMJ_2024_15_3_a6 ER -
%0 Journal Article %A I. Y. Popov %A E. S. Trifanova %A A. S. Bagmutov %A I. V. Blinova %T Barrier composed of perforated resonators and boundary conditions %J Eurasian mathematical journal %D 2024 %P 68-76 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/ %G en %F EMJ_2024_15_3_a6
I. Y. Popov; E. S. Trifanova; A. S. Bagmutov; I. V. Blinova. Barrier composed of perforated resonators and boundary conditions. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 68-76. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/
[1] A. S. Bagmutov, E. S. Trifanova, I. Y. Popov, “Resonator with corrugated boundary: Numerical results”, Phys. Part. Nucl. Letters, 20:2 (2023), 110–115 | DOI
[2] J. Behrndt, “Elliptic boundary value problems with k-dependent boundary conditions”, J. Differential Equations, 249 (2010), 2663–2687 | DOI
[3] M. Sh. Birman, T. A. Suslina, “Homogenization with corrector term for periodic elliptic Differential operators”, St. Petersburg Math. J., 17 (2006), 897–973 | DOI
[4] D. Borisov, R. Bunoiu, G. Cardone, “Homogenization and asymptotics for a waveguide with an innite number of closely located small windows”, J. Math. Sci., 176 (2011), 774–785 | DOI
[5] R. Brizzi, J. P. Chalot, “Boundary homogenization and Neumann boundary value problem”, Ricerche Mat., 46 (1997), 341–387
[6] G. Cardone, T. Durante, “Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation”, Nanosyst. Phys. Chem. Math., 13 (2022), 5–13 | DOI
[7] G. Cardone, A. Khrabustovskyi, “Neumann spectral problem in a domain with very corrugated boundary”, J. Differential Equations, 259:6 (2015), 2333–2367 | DOI
[8] S. V. Frolov, I. Yu. Popov, “Resonances for laterally coupled quantum waveguides”, J. Math. Phys., 41:7 (2000), 4391–4405 | DOI
[9] R. R. Gadilshin, “Surface potentials and method of matching of asymptotic expansions in the problem of Helmholtz resonator”, Alg. Anal. (Leningrad Math. J.), 4 (1992), 88–115
[10] Transl. Math. Monographs, 102, Amer. Math. Soc., Providence, 1992 | DOI
[11] A. Khrabustovskyi, “Homogenization of eigenvalue problem for Laplace-Beltrami operator on Riemannian manifold with complicated “bubble-like” microstructure”, Math. Methods Appl. Sci., 32 (2009), 2123–2137 | DOI
[12] A. Maurel, J. J. Marigo, J. F. Mercier, K. Pham, “Modelling resonant arrays of the Helmholtz type in the time domain”, Proc.Proc. R. Soc. A, 474 (2018), 20170894 | DOI
[13] X. Ni, K. Chen, M. Weiner, D. J. Apigo, C. Prodan, A. Alu, E. Prodan, A. B. Khanikaev, “Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals”, Commun. Phys., 2 (2019), 55 | DOI
[14] I. Yu. Popov, “Asymptotics of bound states for laterally coupled waveguides”, Rep. Math. Phys., 43 (1999), 427–437 | DOI
[15] I. Y. Popov, “A model of charged particle on the at Mobius strip in a magnetic field”, Nanosystems: Phys. Chem. Math., 14:4 (2023), 418–420 | DOI
[16] I. Yu. Popov, I. V. Blinova, A. I. Popov, “A model of a boundary composed of the Helmholtz resonators”, Complex Variables and Elliptic Equations, 66:8 (2021), 1256–1263 | DOI
[17] I. Popov, T. S. Yurova, “Resonances for Laplacian perturbed on surface and cell membrane model”, Boletin de la Sociedad Matematica Mexicana, 29:3 (2023), 85 | DOI
[18] I. Yu. Popov, E. S. Tesovskaya, “Electron in a multilayered magnetic structure: resonance asymptotics”, Theoretical and Mathematical Physics, 146:3 (2006), 361–372 | DOI
[19] I. V. Proskuryakov, Problems in linear algebra, English translation, Mir Publishers, M., 1978
[20] L. Schwan, O. Umnova, C. Boutin, J. P. Groby, “Nonlocal boundary conditions for corrugated acoustic metasurface with strong near-field interactions”, Journal of Applied Physics, 123 (2018), 091712 | DOI
[21] T. A. Suslina, “Homogenization of elliptic operators with periodic coe cients depending on the spectral parameter”, St. Petersburg Math. J., 27:4 (2016), 651–708 | DOI
[22] A. M. Vorobiev, A. S. Bagmutov, A. I. Popov, “On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier”, Nanosyst. Phys. Chem. Math., 10:4 (2019), 415–419 | DOI
[23] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94