Barrier composed of perforated resonators and boundary conditions
Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 68-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Laplace operator with the Neumann boundary condition in a two-dimensional domain divided by a barrier composed of many small Helmholtz resonators coupled with the both parts of the domain through small windows of diameter $2a$. The main terms of the asymptotic expansions in a of the eigenvalues and eigenfunctions are considered in the case in which the number of the Helmholtz resonators tends to innity. It is shown that such a homogenization procedure leads to some energy-dependent boundary condition in the limit. We use the method of matching the asymptotic expansions of boundary value problem solutions.
@article{EMJ_2024_15_3_a6,
     author = {I. Y. Popov and E. S. Trifanova and A. S. Bagmutov and I. V. Blinova},
     title = {Barrier composed of perforated resonators and boundary conditions},
     journal = {Eurasian mathematical journal},
     pages = {68--76},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/}
}
TY  - JOUR
AU  - I. Y. Popov
AU  - E. S. Trifanova
AU  - A. S. Bagmutov
AU  - I. V. Blinova
TI  - Barrier composed of perforated resonators and boundary conditions
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 68
EP  - 76
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/
LA  - en
ID  - EMJ_2024_15_3_a6
ER  - 
%0 Journal Article
%A I. Y. Popov
%A E. S. Trifanova
%A A. S. Bagmutov
%A I. V. Blinova
%T Barrier composed of perforated resonators and boundary conditions
%J Eurasian mathematical journal
%D 2024
%P 68-76
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/
%G en
%F EMJ_2024_15_3_a6
I. Y. Popov; E. S. Trifanova; A. S. Bagmutov; I. V. Blinova. Barrier composed of perforated resonators and boundary conditions. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 68-76. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a6/

[1] A. S. Bagmutov, E. S. Trifanova, I. Y. Popov, “Resonator with corrugated boundary: Numerical results”, Phys. Part. Nucl. Letters, 20:2 (2023), 110–115 | DOI

[2] J. Behrndt, “Elliptic boundary value problems with k-dependent boundary conditions”, J. Differential Equations, 249 (2010), 2663–2687 | DOI

[3] M. Sh. Birman, T. A. Suslina, “Homogenization with corrector term for periodic elliptic Differential operators”, St. Petersburg Math. J., 17 (2006), 897–973 | DOI

[4] D. Borisov, R. Bunoiu, G. Cardone, “Homogenization and asymptotics for a waveguide with an innite number of closely located small windows”, J. Math. Sci., 176 (2011), 774–785 | DOI

[5] R. Brizzi, J. P. Chalot, “Boundary homogenization and Neumann boundary value problem”, Ricerche Mat., 46 (1997), 341–387

[6] G. Cardone, T. Durante, “Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation”, Nanosyst. Phys. Chem. Math., 13 (2022), 5–13 | DOI

[7] G. Cardone, A. Khrabustovskyi, “Neumann spectral problem in a domain with very corrugated boundary”, J. Differential Equations, 259:6 (2015), 2333–2367 | DOI

[8] S. V. Frolov, I. Yu. Popov, “Resonances for laterally coupled quantum waveguides”, J. Math. Phys., 41:7 (2000), 4391–4405 | DOI

[9] R. R. Gadilshin, “Surface potentials and method of matching of asymptotic expansions in the problem of Helmholtz resonator”, Alg. Anal. (Leningrad Math. J.), 4 (1992), 88–115

[10] Transl. Math. Monographs, 102, Amer. Math. Soc., Providence, 1992 | DOI

[11] A. Khrabustovskyi, “Homogenization of eigenvalue problem for Laplace-Beltrami operator on Riemannian manifold with complicated “bubble-like” microstructure”, Math. Methods Appl. Sci., 32 (2009), 2123–2137 | DOI

[12] A. Maurel, J. J. Marigo, J. F. Mercier, K. Pham, “Modelling resonant arrays of the Helmholtz type in the time domain”, Proc.Proc. R. Soc. A, 474 (2018), 20170894 | DOI

[13] X. Ni, K. Chen, M. Weiner, D. J. Apigo, C. Prodan, A. Alu, E. Prodan, A. B. Khanikaev, “Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals”, Commun. Phys., 2 (2019), 55 | DOI

[14] I. Yu. Popov, “Asymptotics of bound states for laterally coupled waveguides”, Rep. Math. Phys., 43 (1999), 427–437 | DOI

[15] I. Y. Popov, “A model of charged particle on the at Mobius strip in a magnetic field”, Nanosystems: Phys. Chem. Math., 14:4 (2023), 418–420 | DOI

[16] I. Yu. Popov, I. V. Blinova, A. I. Popov, “A model of a boundary composed of the Helmholtz resonators”, Complex Variables and Elliptic Equations, 66:8 (2021), 1256–1263 | DOI

[17] I. Popov, T. S. Yurova, “Resonances for Laplacian perturbed on surface and cell membrane model”, Boletin de la Sociedad Matematica Mexicana, 29:3 (2023), 85 | DOI

[18] I. Yu. Popov, E. S. Tesovskaya, “Electron in a multilayered magnetic structure: resonance asymptotics”, Theoretical and Mathematical Physics, 146:3 (2006), 361–372 | DOI

[19] I. V. Proskuryakov, Problems in linear algebra, English translation, Mir Publishers, M., 1978

[20] L. Schwan, O. Umnova, C. Boutin, J. P. Groby, “Nonlocal boundary conditions for corrugated acoustic metasurface with strong near-field interactions”, Journal of Applied Physics, 123 (2018), 091712 | DOI

[21] T. A. Suslina, “Homogenization of elliptic operators with periodic coe cients depending on the spectral parameter”, St. Petersburg Math. J., 27:4 (2016), 651–708 | DOI

[22] A. M. Vorobiev, A. S. Bagmutov, A. I. Popov, “On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier”, Nanosyst. Phys. Chem. Math., 10:4 (2019), 415–419 | DOI

[23] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94